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FIGURE 3.48: (a] Input image
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320  Chapter 5 W Image Restoration and Reconstruction

a
b

FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.

one sine wave).
(Original image
courtesy of

NASA.)
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Chapter - 6 Restoration 495

FIGURE 6.19: (d) Filtered image with median
filter

£6.19: (o) Filtered image with mean filter

6.19: (a) Input image (b) noisy image, image filtered by (c) mean (d) Median
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FGURE 6.20: (c) Filtered image with 5 x 5

FIGURE 6.20: (d) Filtered image with 7 x 7
median filter median filter

FIGURE 6.20: (o) Noisy image, image filtered by median filter of size (b) 3 x 3 [¢) 5 x 5
47 x7

b. Max and Min Filter

The restored image from a max filter is given by

f(xy) = max {g(s1)] (6.2
Thus new value at = max {g(s)}  _  ax (30, 10, 20, 10, 250,25, 20,25, 30
{'x,}'j in flg 6.91 sLE ‘S‘)
T
20 X ¥ F
50 |10 ¢
hax x 250 X
10 |250 |95 |———
ﬁltcr x % X
20 |25 |30

FIGURE 6.21: Example of max filter

Example 6,3
Slow the effect of 3 x 3 max on image in ﬁg 6.22 (a}
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fl:GURE 6.27: (c) Filtered image using median l;lg:: | m
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FIGURE 6.27: (e) Filtered image using min FIGURE 6.27: (f) Filtered ima
filter point filter

FIGURE 6.27: Original image (b) noisy image, fillered image using (¢ MG
(f] mid point filter e

d. Alpha-trimmed Mean Filter
Let there be m x n pixels in neighbourhood S . Remove % lowest and '

L3
..I

Scanned with CamScanf grs




: 1 ,rxﬂ‘_},&_ {

1§



Scanned with CamScanf e|p




Scanned with CamScanf er1




Scanned with CamScanf 3?




Scanned with CamScanf éIIB




Scanned with CamScanf er4




332 Chapter § ®m Image Restoration and Reconstruction

ab

cd

FIGURE 5.13

(a) Image
corrupted by
noise of zero
mean and
variance 1000.
(b) Result of
arithmetic mean
filtering.

(c) Result of
geometric mean

filtering.

(d) Result of
adaptive noise
reduction

filtering. All filters
were of size
T -
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Morphological Image Processing :
Preliminaries,
Dilation and Erosion
opening and closing
the Hit- or-Miss Transformation
some basics Morphological Algorithm
Chg:9.1t0 9.5

Image segmentation :

Fundamentals, point, line and edge detection, detection of isolated
point, line detection edge models, basic edge detection

| 10.1,10.2.2 t0 10.2.5]
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— 9.1 Prelimmnari€és

v “Morphology “ - a branch in biology that deals with the form and
structure of animals and plants.

v “Mathematical Morphology” - as a tool for extracting image components,
that are useful in the representation and description of region shape.

v The language of mathematical morphology is — Set theory.

v Morphology offers a unified and powerful approach to numerous image
processing problems.

v" Sets in mathematical morphology represents objects in an image.

v" For example, the set of all white pixels in a binary image is a complete
morphological description of the image.
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——
= Preliminaries

v In binar%/ images , the set elements are members of the 2-D integer
space Z . where each element (x,y) is a coordinate of a black (or white)
pixel in the image.

v' Gray scale digital imgages can be represented as sets whose
components arein Z .

v In this case two components of each elements of the set refers to the
coordinates of a pixel and the third corresponds to its discrete intensity
values.

v" Sets in higher dimensional spaces can contain other images attributes
such as color and time varying components.
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‘Basic Concepts in Set Theory

Subset 4 cpg

Union A UB

Intersection AR

disjoint / mutually exclusive A NEBE= 0
Complement Af={w|w €4}

Difference A-B={w|weEd,we&B}l=ANB°
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~Logic Operations Involving Binary Pixels
and Images

The principal logic operations used in image processing
are: AND, OR, NOT (COMPLEMENT).

These operations are functionally complete.

Logic operations are preformed on a pixel by pixel basis between
corresponding pixels (bitwise).

Other important logic operations :
XOR (exclusive OR), NAND (NOT-AND)

Logic operations are just a private case for a binary set operations,
such : AND - Intersection , OR - Union, NOT-Complement.
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A NOT(A)

(AJOR(B)

4

(A)XOR(B)

XOR
=

INOT (A)] AND(B)

NOT
AND| i
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" Reflection and Translation

—

Reflection

The reflection of a set B, denoted g Is defined as
B={w|w=—b,for be B}

If B is a set of pixels (2-D points) representing an object in an image, the "ﬁ
is simply the set of points in B whose (x, y) coordinates have been replaced by

('X)_Y) .

5/27/2020 9230
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= Eample: Reflection and Translation

abc

FIGURE 9.1
(a) A set, (b) its
reflection, and

) (c) its translation

by z.

Z1 |4

231
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Translation

The Translation of a set B by point z = ( Z,2, ) denoted by (B) is defined

(B), ={c|c=b+z,for b € B}

If B is the set of pixels representing an object in an image, then (B) is
the set of points in B whose (X, y) coordinates have been replaced by

(x+2z1,y+z2)

5/27/2020 11232
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Structure elements (SEs)

Set reflection and translation are employed extensively in
morphology to formulate operations based on so called
structuring elements (SEs) : small set or sub images used
to probe am image under study for properties of interest.

233
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Examples: Structuring Elements (1)

5/27/2020

FIGURE 9.2 First
row: Examples of
structuring
elements. Second
row: Structuring
elements
converted to
rectangular
arrays. The dots
denote the centers
of the SEs.
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Accommodate the\
entire structuring
elements when its
origin is on the

border of the

Exampmles: Structu

original set AN/

ents (2)

ab
cde

Orlgm of B visits

~every element of A

“/ Ateachlocation of

the origin of B, if B
is completely
contained in A,
then the location is
a member of the
new set, otherwise
it is not a member

of the new set.

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.
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~— 9.2 Erosion and Dilation

These two operations are fundamental to morphological processing.

9.21. Erosion

With A and B as sets in Z° , the erosion of Aby B is denoted by A B,

is defined as A%B:{z|(B)Z (;A} .................. 9.2.1

In words , this equation indicates that the erosion of A by B is the set of all
points z such that B, translated by z, is contained in A.

We can express erosion in the following equivalent form :
ASB={z|(B), N4 =@} 9.2.2

5/27/2020 15’236



Example for Erosion

Input image 1

SE e e e

0
.

Structuring Element 1 1 1

!

Output Image

27-May-20 16237



Example for Erosion

Input image 1 0

S e

0
Structuring Element 1 1 1

!

Output Image 0
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Example for Erosion

Input image 1 0 0

- i

0
Structuring Element 1 1 1

!

Output Image 0O (0
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Example for Erosion

Input image 1 0 0 0

1
Structuring Element 1 1 1

!

Output Image O |10 |0

27-May-20 el



Example for Erosion

Input image 1 0 0 0 1 1 1 0 1 1
Structuring Element 1 1 1
Output Image O 08 g

27-May-20 2741



Example for Erosion

Input image 1 0 0 0 1 1 1 0 1 1
Structuring Element 1 1 1
Output Image 0 0 0 0 1 0

27-May-20 2iefte



Example for Erosion

e -
Structuring Element 1 1 1
Output Image B i ey

27-May-20 2209



Example for Erosion

Input image T 00 00 0 b 0 00 0T ]
Structuring Element 1 1 1
Output Image O O O O 1 O O O

27-May-20 2t
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9.2.2 Erosion — Example 1

o (d/4

- - B e v B SR SN R R S = e= e ows e

ASB

A

- »!.,- 1 ?:;i_ i
abe

FIGURE 9.6 (a) Set A. (b) Square structuring clement. (¢) Erosion of A by B, shown
shaded
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d/4

s E dj2
e |d E ;
5 \ df2
' A e B 1
- A B : !
ade ;1/8U 3d /4 21 /é
FIGURE 9.6

(a) Set A.(d) Elongated structuring element. (¢) Erosion of A using this element.
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Exam
ple of
Erosio
n (2)

5/27/2020

ab
c d

FIGURE 9.5 Using
erosion to remove
image compo-
nents. (a) A

486 X 486 binary
image of a wire-
bond mask.
(b)—(d) Image
eroded using
square structuring
elements of sizes
11 X 11,15 X 15,
and 45 X 45,
respectively. The
elements of the
SEs were all 1s.
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" The erosion shrinks or thins objects in a binary image.

We can view erosion as a morphological filtering operation in which
image details smaller than the structuring element are filtered from the
image.

Dilation:

Dilation is used for expanding an element A by using structuring
element B

With A & B as sets in Z~ Dilation of A by B and is defined by the
following equation:

A®B={z|(B)zNnA # @} — 9.2.3
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This equation is based on reflecting B about its origin and
shifting this reflection by z.

The dilation of A by B is the set of all displacements z, such that
B and A overlap by at least one element.

Based on this interpretation the equation of (9.2-1) can be

rewritten as:

A®B={z|[(B)znA] c 4} 924

We assume that B is a structuring element and A is the set to be

dilated.
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L —
Structuring element B is viewed as a convolution
mask.

The basic process of flipping (rotating) B about its
origin and then successively displacing it so that it
slides over a set (image )A .

It is analogous to spatial convolution , however
dilation is based on set operations and therefore is a
nonlinear operation unlike convolution.
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Example for Dilation

Input image 1

SE e e e

0
Structuring Element 1 1 1

!

Output Image

27-May-20 31292



Example for Dilation

Input image 1 0

S e

0
Structuring Element 1 1 1

!

Output Image 1
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Example for Dilation

Input image 1 0 0

- i

0
Structuring Element 1 1 1

!

Output Image 1 0
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Example for Dilation

Input image 1 0 0 0

1
Structuring Element 1 1 1

!

Output Image 1 0 3
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Example for Dilation

Input image 1 0 0 0 1 1 1 0 1 1
Structuring Element 1 1 1
Output Image ety 1 1 1

27-May-20 3296



Example for Dilation

Input image 1 0 0 0 1 1 1 0 1 1
Structuring Element 1 1 1
Output Image 1 0 1 £ 1 1
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Example for Dilation

Input image T 00 00 0 b 0 00 0T ]
Structuring Element 1 1 1
Output Image 1 0 1 1 1 34 1
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Example for Dilation

Input image T 00 00 0 b 0 00 0T ]
Structuring Element 1 1 1
Output Image 00 01 i bk 0t ]

27-May-20 3299



abc
d e

FIGURE 9.6

(a) Set A.

(b) Square
structuring ele-
ment (the dot de-
notes the origin).
(c) Dilation of A
by B, shown
shaded.

(d) Elongated
structuring ele-
ment. (e) Dilation
of A using this
element. The
dotted border in
(c) and (e) is the
boundary of set A,
shown only for
reference

d/4

o
Il
v
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9.2.1 Dilation —

S TN P
abe d

FIGURE 9.4

(a) Set A.

(b) Square
structuring
element (dot is
the center).

(¢) Dilation ol A
by B, shown A
shaded.

Example 1

d /4

s

df4
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9.2.1 Dilation — Example 2

ade

(d) Elongated
structuring
element.

(¢) Dilation of A
using this
element.

d

d/a

%
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One of the simplest applications of dilation is for

bridging gaps.

—

Fig below shows the same image with broken
characters.

The maximum length of the breaks is known to be two
pixels.

Instead of shading, we used 1s to denote the elements
of SE and 0’s for background , because, SE is now being
treated as a sub image and not a graphic.
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Historically, certain computer

programs were written using

only two digits rather than

four to define the applicable

year. Accordingly, the

company's software may
recegnize a date using "00"

as 1900 rather than the ',rr

2060.

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year
2000. /

===

N

5/27/2020

FIGURE 9.7

(a) Sample text of
poor resolution
with broken
characters (see
magnified view).
(b) Structuring
element.

(c) Dilation of (a)
by (b). Broken
segments were
joined.
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~Duality beth

erosion

Dilation and erosion are duals of each other with respect to set
complementation and reflection. That is,

Eq 9.2-5 indicated that erosion of A & B is the complement of dilation
of A by B and viceversa
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—Dilation and erosion are S

Starting with definition of erosion

f ¢
{1 ZB),nA=0]
=17(B), " A" 22 |

A@B:{ z‘(é)zmA;t @} -
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Application of erosion: eliminate

/. . :
irrelevant detail
Squares of size Erode with
1,3,5,7,9,15 pels 13x13 square

original image erosion dilation

One of the simplest uses of erosion is for eliminating irrelevant details (in terms of

size) from a binary image.
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Dilation adds pixels to the boundaries of an object.

Erosion removes pixels on object boundaries.

The number of pixels added or removed from the objects

in an image depends on the size and shape of the

structuring elements used to process the image.
Applications:

Dilation : for bridging gaps in an image.

Erosion: eliminating unwanted detail in an image.
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P L
/ B — .
0 0 0 0 0 0 1 fully match : 1
0 0 1 1 0 0 2 partially match -1
A= 0 1 1 1 1 0 EI=:¢ 3 no match :0
o[ o[ o] 1 1 0 1
o[ oo o© 0 0
A Dilation B I
0 0 I1E’EIDH 1 0 0 dllatlon
0| 1] 1 1 1 0
0| 1 [ 1 1 1 0
0| 1] 1 1 1 0
0| 0| 1 1 0 0
erosion

L fully match : 1

2 | partially match 0

3 no match -0
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e https://www.youtube.com/playlist?list...

for problems refer problem the following link

e https://www.youtube.com/watch?v=uMfoOP2Emxs
e https://www.youtube.com/watch?v=fiSkgmlbQao

e https://www.youtube.com/watch?v=T8uWZXbg2AU
e https://www.youtube.com/watch?v=2L.AooUuiljQ)

e C:\Users\admin\Desktop\module4 DIP\ Erosion

e C:\Users\admin\Desktop\module4 DIP\ dilation
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https://www.youtube.com/playlist?list=PLHLtQZu3roXhE4JrGja1soerwkZlFjERH
https://www.youtube.com/watch?v=uMfoOP2Emxs
https://www.youtube.com/watch?v=fiSkqmlbQa0
https://www.youtube.com/watch?v=T8uWZXb92AU
https://www.youtube.com/watch?v=2LAooUu1IjQ
Erosion.mp4
dilation.mp4

/

9.3 Opening And Closing

Opening — smoothes the contour of an object, breaks narrow
isthmuses & eliminates thin protrusions.

e

Closing — also tends to smooth sections of contours, but as opposed
to opening it generally fuses narrow breaks and long thin gulfs,
eliminates small holes and fills gaps in contours

These operations are dual to each other

These operations are can be applied few times, but has effect only
once
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" o The opening of set A by structuring element B, denoted as A ¢ B, is defined as
® Opening A by B is erosion of A by B followed by a dilation of the result by B.

® Similarly closing of set A by structuring element B is denoted by A e B, is
defined as

® This means that closing of A by B is simply the dilation of A by B, followed by
the erosion of the result by B.

® Opening > Erosion followed by a dilation.

® Closing = A dilation followed by an erosion.
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/ 0 : .
— Problem : Suppose two discrete functions are represented by the

sequences A={5,7,11,8,2,6,8,9,7,4,3} B={1,2,1}

5 7 11 a8 2 G a8 g 7 4 3
1 1 2 1%
2 1 2 1
3 1 2 1
4 1 2 1
5 1 2 1
B 1 2 1
i 1 2 1
B8 1 2 1
g 1 2 1
10 1 2 1
11 1 2 1]
add 1.7.8
Dilation |max: D g 12 13 12 g g 10 11 10 g 5
sub 1.3.6
Erosion |min:E 3 4 b 1 1] 1 5 b 3 2 1

Opening = A o B = first perform erosion then on that result perform dilation

erosion result : {3,4,6,1,0,1,5,6,3,2,1} on this perform dilation with B.

Closing = Ae B= first perform dilation then on that result perform an erosion:

Dilation result : {8,12,13,12,9,9,10,11,10,8,5} on this perform erosion with B
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Translates of Bin A

(2)s
oW

Find contour Fill in contour

Smooth the contour of an image, breaks narrow isthmuses,
eliminates thin protrusions
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A°B=U((B)J(B),C Al

abcd

FIGURE 9.8 (a) Structuring element B “rolling” along the inner boundary of A (the dot
indicates the origin of B). (b) Structuring element. (c) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade A in (a)
for clarity.
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Use of opening and closing for morphological filtering

opening of A

erosion

dilation of the opening

original image

closing of the opening




As in the case with dilation @nd erosion, opening and closing are duals of
each other with respect to set complementation and reflection. That is,

(Ao B = (& ¢ B) (9.3-4)
and
(A ° B = (A° ¥ B) (9.3-5)
We leave the proof of t}lis result as an exercise (Problem 9.14).
The opening operation satisfies the following properties:

(a) A ° Bisasubset (subimage) of A
(b) If Cisasubsetof D, then C = Bisasubsetof D o B,
{¢c) (Ao B)> B= A+ B,

Similarly, the closing operation satisfies the following properties:

{a) A isasubset (subimage) of A ¥ B,
(b) If Cisasubsetof D, then C ¥Bisasubsetof D ¥5.

(¢) (A¥B)¥B = A¥B.

Note from condition (c) in both cases that multiple openings or closings of a
set have no effect after the operator has been applhied once.

Proof link
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https://www.youtube.com/watch?v=SccZvlDMcAk

“9.4 The Hit-or-Miss Transform/ation

A basic morphological tool for shape detection.

Is used for template matching.
The transformation involves two templates sets, B and (W-B) which are disjoint.

Template B is used to match the foreground image while (W-B) is used to match the
background of the image.

The hit-or-miss transforms is the intersection of the erosion of the foreground with
B and the erosion of the background with (W-B).

The hit — or-miss transforms is defined as
-wnﬂ i

A®] /q.ﬁ(“_;@;’)n[Ac@(W D)]

The small window W is assumed to have at least one pixel , thicker than B.
We can generalize the notation somewhere by letting B=(B1, B2)
B1=B and B2=(W-B)

A®EB=(A ©By) n (A° 3 B;)

280



Thus, set @8 contains all the (origin) points at which,
simulatneously, B1 found a match ("hit") in A and

B2 found a match i:n.

by uisng the defination pf set differences and dual
relationship between erosion and dilation we can write

the above equation as

Any of these three equations can be used and are called morphological Hit-or-

miss transforms..
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First we have to find the erosion of the input image X
with the structuring element B.

Find the complement of the input image X and then
erode it with the structuring element (W-B).

Now find the intersection of the images of the above
two steps , this gives the hit-or-miss transformation of
input image X.
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(AS D)MN (A<D [W — D))

//7

ab

cd
e
f

FIGURE 9.12

(a) Set A. (b) A
window, W, and
the local back-
ground of D with
respect to

W, (W — D).

(c) Complement
of A. (d) Erosion
of Aby D.

(e) Erosion of A°
by (W — D).

(f) Intersection of
(d) and (e), show-
ing the location of
the origin of D, as
desired. The dots
indicate the
originsof C, D,
and E.
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e The reason for using these kind of structuring element -
B = (B1,B2) is based on an assumed definition that,

two or more objects are distinct only if they are
disjoint (disconnected) sets.

e In some applications , we may interested in detecting

certain patterns (combinations) of 1’s and O’s.
and not for detecting individual objects.

e In this case a background is not required.

and the hit-or-miss transform reduces to simple erosion.

e This simplified pattern detection scheme is used in
some of the algorithms for - identifying characters
within a text.
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The input image and the structuring elements are shown in below fig. find the hit or
mass transformation for the input image
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" 9.5 Basic Morphological Algorithms

Some of the pratical uses of morphology:
1 - Boundary Extraction

2 — Region Filling

3 — Extraction of Connected Components
4 — Convex Hull

5 — Thinning

6 — Thickening

7 — Skeletons



~95.1 Boundamion/

e First, erode A by B, then make set difference between
A and the erosion

® The thickness of the contour depends on the size of
constructing object - B

B(A) =A—-(A0OB)

where, ;
Y --->boundary image

' ---->erosion
& _- >dilation
P >subtraction




AOSB B(A)

ab
c d

FIGURE 9.13 (a) Set A. (b) Structuring element B. (c) A eroded by B. (d) Boundary,
given by the set difference between A and its erosion.
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> 9.5.2 Region Filling

Region /hole filling is the process of “coloring in “ a
definite image area or region.

Region may be defined at the pixel level or geometric
level .

at pixel level, we describe a region either in terms of
the bounding pixels that outline it or as the totality of
pixels that comprises it.

In the first case, the region is called boundary-defined
which is shown in fig below.

The collection of algorithms used for such case are

called as boundary filling algorithms. .



The other type of region is called an interior define region and the accompanying
algorithms are called as flood-fill algorithms.

At geometric level, each region is defined or enclosed by such abstract contouring
elements as connected as lines and curves.

B is a structuring element; A denotes a set containing a subset whose elements are 8
connected boundary points of region. k ----number of iterations
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e ' Vi e
beginning with a point inside the boundary, the
objective is to fill the entire region with 1s, by

iteratively processing dilation.

—

Region filing is based on dilation, complementation
and intersections.

There are two ways to terminate the iteration of
algorithm,

If the region is filled, then stop the iteration or fix the
number of iterations to fill in the region.
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oc QLo
=a e
== 0

FIGURE 9.15 Hole
filling. (a) Set A
(shown shaded).
(b) Complement
of A.

(c) Structuring
element B.

(d) Initial point
inside the
boundary.
(e)-(h) Various
steps of

Eq. (9.5-2).

(i) Final result
[union of (a)
and (h)].
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FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting
point for the hole-filling algorithm). (b) Result of filling that region. (c) Result of filling
all holes.

5/27/2020 77298



~~ The input image and structuring elements are shown. Perform the region filing
operation




Stepl : initially take X0 as shown below, now perform the dilation of X0 with the
structuring element B. The resulting image is then intersected with the complement of
the input image. This completes first iteration
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{ The steps followed in steps 2 and 3 are repeated:in Step 4. The

he)

”
Nl
e -

'

4 -
=

nput to Step S is the output image of

Step 4, The process d

resultant image 15 ShOWD DSIOW.

-

!
aEEan
-~ S -

»

— :
R S

one in Step 418 repeated 10

U
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Gtep 6 s the output image of Step 5. The process done in Step ¢

SN"’ D | TIRIS AR |

Step ~ Now, we perform the union of the result obtained in Step 7 with the o7
the region-filled image which is:shown below.

— ]

—
L

t11]
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9.5.3 Extraction of Connected
Components

® This algorithm extracts a component by selecting a
point on a binary object A

* Works similar to region filling, but this time we use in
the conjunction the object A, instead of it’s
complement

X = X1 ®@B)NA



a
b c d
e f g

FIGURE 9.17 Extracting connected components. (a) Structuring element. (b) Array
containing a set with one connected component. (c) Initial array containing a 1 in the
region of the connected component. (d)—(g) Various steps in the iteration of Eq. (9.5-3).




a
b
c d

FIGURE 9.18

(a) X-ray image
of chicken filet
with bone frag-
ments.

(b) Thresholded
image. (c) Image
er uded with a

5 X 5 structuring
elcmcm of 1s.

(d) Number of
pixels in the
connected compo-
nents of (c¢).
(Image courtesy of
NTB
Elektronische
Geraete GmbH,
Diepholz,
Germany,
www.ntbxray.com.)

Connected
component

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Na. of pixels in
connécted comp

11
9
9
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. 9.5.4 Convex Hull

* Ais said to be convex if a straight line segment joining
any two points in A lies entirely within A

e The convex hull H of set S is the smallest convex set
containing S

e Convex deficiency is the set difference H-S

e Useful for object description

 This algorithm iteratively applying the hit-or-miss
transform to A with the first of B element, unions it
with A, and repeated with second element of B

I = (X)—1®BH U A



Y% B
2 B2
N B?
i 4

FIGURE 9.19

(a) Structuring
elements. (b) Set
A. (¢)-(f) Results
of convergence
with the
structuring
elements shown
in (a). (g) Convex
hull. (h) Convex
hull showing the
contribution of
each structuring
element.




The convex Hull method consists of iteratively applying the hit-or-miss
transforms to A with B!

When no further change occurs, , we perform the union with A and call the
result DL

The procedure is repeated for B2 applied to A with no change occurs ...and
so on..

The union of 4 resulting Ds constitute the convex hull of A.




X indicated
don’tcare







‘W = ] is shown below.

sl =
I

Tht‘n WwWe 1 " ;
Vi Tind the antersectivn of above two results which is illustrated below.

T T -
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i Hr—-%
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9.5.5 Thinning

The thinning of a set A by a structuring element B,
can be defined by terms of the hit-and-miss transform:

ARB=A-(A®B)=AN(A® B)*

A more useful expression for thinning A symmetrically
is based on a sequence of structuring elements:

{B}={B, B> B3, ..., B"}

Where B! is a rotated version of B''. Using this concept
we define thinning by a sequence of structuring
elements: A® {B} = ((..(A®BY) ® B?)..) ® B
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—+The process is to thin by one pass with B', then thin
the result with one pass with B2, and so on until A is
thinned with one pass with B™.

The entire process is repeated until no further changes
occur.

Each pass is preformed using the equation:

ARB=A-(A®B)=AN(A® B)*
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| ® b * ® x ®
» Y x e Y
s e Y o x
B! B? B? B! B’ B B’ B®
Origin
A A =AQ®B! A; = A ® B?
A3:A2®Bq A4:A3®B4 A5:A4®BS
A6:A5®BG AE—A'S@'B?E A84:A8®Bl’214
Ags = Agy ® B Age = Ags @ B° Aggconverted to

No more changes after this.

m-connectivity.
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* Apply the thinning process to the image using the
structuring element shown below
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solution The step-by-Step approds h of the
on of input image with Struchuriig element

thinning process 15 gIven below

Step 1 To perform the eroded operali
First, we find the eroded inp image with th

¢ structuring element. The resultant Image s shown below
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74 Digital Imagt
o o e hiter s ,,.,,mjbrmution of the input 1IGEE
syep 3 To fimd e S e of the @ 0 fe '
o hit-or-iSS ansformation 1 (he intersection of thbm‘fbovfl g results This restltast
cted from HE original I {imge: ¢ dwe gt the EHEE original image, This i illustraa'
5 v - t‘d
N
r-r"‘
L
— o B
- — 1" E 4
M Bt o oot -
—
_ g NI =
Note Changing thie structuring clement will yield @ different extent of the thinning peration.
- =i
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9.5.6 Thickening

Thickening is a morphological dual of thinning.
Definition of thickening A©B=4u (4 ® B).

As in thinning, thickening can be defined as a
sequential operation:

the structuring elements used for thickening have the
same form as in thinning, but with all 1’s and o’s
interchanged.
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A separate algorithm for thickening is often used in
practice, Instead the usual procedure is to thin the
background of the set in question and then complement
the result.

In other words, to thicken a set A, we form C=A¢, thin C
and than form C¢.

depending on the nature of A, this procedure may result in
some disconnected points. Therefore thickening by this
procedure usually require a simple post-processing step to
remove disconnected points.
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/9.5.6 Thickening example preview

We will notice in the next example 9.22(c) that the
thinned background forms a boundary for the
thickening process, this feature does not occur in the
direct implementation of thickening

This is one of the reasons for using background
thinning to accomplish thickening.
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9.5.6 Thickening example

= -
B | | | e
== =1 3
SRR
o o4 %1:# [
i ol
] - PR iR T T
L 2T
ab
22, angs L
€ -

FIGURE 9.?2 (a) Set A. (b) Complement of A. (c) Result ol thinning the complement of
A. (d) Thickened set obtained by complementing (c). (e) Final result, with no discon-

nected points.
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9.5.7 Skeleton

The notion of a skeleton S(A) of a set A is intuitively
defined, we deduce from this figure that:

a) Ifzisa point of S(A) and (D)z is the largest disk
centered in z and contained in A (one cannot find a
larger disk that fulfils this terms) - this disk is called
“maximum disk’.

b) The disk (D)z touches the boundary of A at two or
more different places.
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9.5.7 Skeleton

The skeleton of A is defined by terms of erosions and
openings:

s = Jse@
k=0

with $(4) =(A©kB)-(AQkB)°B

Where B is the structuring element and (4 © kB) indicates k
successive erosions of A:

(AOKB)=(..(AOB)OB)O ..) OB

k times, and K is the last iterative step before A erodes to an empty
set, in other words: K = max {k|(A © kB) # 0}

in conclusion S(A) can be obtained as the union of skeleton
subsets Sk(A).
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ab
cd

FIGURE 9.23

(a) Set A.

(b) Various
positions of
maximum disks
with centers on
the skeleton of A.
(c) Another
maximum disk on
a different
segment of the
skeleton of A.

(d) Complete
skeleton.
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A can be also reconstructed from subsets Sk(A) by
using the equation:

a= | Jscw @rp)
k=0

Where (5,(4) @ kB) denotes k successive dilations of
Sk(A) that is:

(Sk(A) @ kB) = ((-..((5:(A)DB)DB)D ...) DB
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9.5.8 Pruning
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Fundamentals, point, line and edge detection,
detection of isolated point, line detection edge
models, basic edge detection [ 10.1,10.2.2 to 10.2.5]
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Image segmentation divides an image into regions that are connected and have some similarity within
the region and some difference between adjacent regions.

The goal is usually to find individual objects in an image.

For the most part there are fundamentally two kinds of approaches to segmentation: discontinuity and
similarity.
= Similarity may be due to pixel intensity, color or texture.

= Differences are sudden changes (discontinuities) in any of these, but especially sudden changes in
intensity along a boundary line, which is called an edge.

Segmentation algorithms are area oriented instead of pixel oriented.
The result of segmentation is the splitting up of image into connected areas.
Thus segmentation is concerned with dividing an image into meaning regions.

Applications of image segmentation:
Medical Imaging , Satellite imaging , Movement detection ,License plate recognition ,Robot navigation ...etc
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10.2 Point, line and Edge Detection

Segmentation methods are based on detecting sharp , local changes
in intensity.

Three types of image features in which we are interested are
v’ isolated points
v lines
and
v edges.

Edge pixels are pixels at which intensity of an image function
changes abruptly , and edges (edge segments) are set of connected
edge pixels .

Edge detectors are local image processing methods designed to
detect edge pixels.
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A line may be viewed as an edge segment in which intensity of the background on either

side of the line is either much higher or lower than intensity of the line pixels. Lines give
rises to so called roof edges.

An isolated point may be viewed as a line whose length and width are equal to one pixel.

10.2.1 Background

WHKT the local changes in intensity can be detected using derivatives.

Derivatives of the digital function are defined in terms of these differences.
First order derivatives :

1. must be nonzero in areas of constant intensity
2. must be non zero at the onset of an intensity step or ramp
3. must be nonzero at points along an intensity ramp.
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Second order derivative :
1.must be zero in areas of constant intensity
2. must ne non zero at the onset and end of an intensity step or ramp

3. must be zero along intensity ramps

Because we are dealing with digital quantities whose values are finite, the
maximum possible 1nten51t¥) change is also fine and the shortest distance over
which a change can occurs is between adjacent pixels.

We obtain an approximation to the first-order derivatives at point x of a one-
dimensional function f(x) by expanding the function f(x+Ax) into a Taylor series
about x, letting Ax=1, and keeping only the linear terms

The result is the digital di
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v We used a partial derivative here for consistency in

no onsider an image function of two
va ), at which time we will be dealing
with partial derivatives along the two spatial axes.

v (Cl
fu

v Wi
by
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» Our interest is on the second derivative about point x,
SO W : ding
exp1

» The above two equations satisty the conditions
regarding derivatives of first and second order.

» To illiab t the fundament
simil: first and second

o1 d e FIGURE 10.2 (a) Image. (b) Horizontal intensity profile through the center of the image, y ge proces sing
« including the solated noise point. (c) Simplified profile (the points are joined by dashes .

Cconsiy, clarity). The image strip corresponds to the intensity profile, and the numbers in the 111 Previous
mod Uboes a tie intensity values of the dots shown in the profile. The derivatives were
obtained using Eqs. (10.2-1) and (10.2-2).
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Summary the following can be concluded:

1. First order derivatives generally produce thicker edges in
an image.

2. Second order derivatives have a stronger response to fine
detail, such as thin lines, isolated points and noise.

3. second -order derivatives produce a double-edge
response at ramp and step transitions in intensity:.

4. the sign of the second derivative can be used to
determine whether a transition into edge is from light to
dark or dark to light. e

R=Wz +W,Z, +...+W,Z, = ¥ W.Z diriaral 3 %S . : o
THe m'ost cornm way tCmk

a small mask over the im:
kind of discontinuity to I

ay s Wy

W iy Wy
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10.2.2 Detection of isolated points

cd on second derivative




» Using Laplacian mask in below figio.4, we say that the
point has been detected as the location (x,y) on which the
mask is centered, if the absolute value of the response of

the mask

* Suchapo
others are
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bcd

FIGURE 10.4

(a) Point
detection
(Laplacian) mask.
(b) X-ray image
of turbine blade
with a porosity.
The porosity
contains a single
black pixel.

(c) Result of
convolving the
mask with the
image. (d) Result
of using Eq. (10.2-8)
showing a single
point (the point
was enlarged to
make it easier to
see). (Original
image courtesy of
X-TEK Systems,
Ltd.)
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/10.2.3 line detection

Next level of complexity is line detection.

For line detection we can expect second derivatives
to result in a stronger response and to produce
thinner lines than first derivatives.

We can use the same laplacian mask shown above in
fig 10.4(a) for line detection keeping in mind that the
double line effect of the second derivative must be
handled properly.

This is illustrated in below example.
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FIGURE 10.5

(a) Original image.
(b) Laplacian
image; the
magnified section
shows the
positive/negative
double-line effect
characteristic of the
Laplacian.

(c) Absolute value
of the Laplacian.
(d) Positive values
of the Laplacian.
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The laplacian detector in fig 10.4, is isotropic, so its
response is independent of direction,

d, ] ] —] 2 =1 -1 -1 2 -1 =] =]

g8

C

b2
[}
[}

[
—
(]

[

[
[
[

[
[
3
[
[

-1 -1 -1 -1 =1 2 =] 2 -1

]

—1 -1

Horizontal +45° Vertical —45°

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).
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Suppose that an image with constant background and containing various lines
(oriented at 0°,+ 45 and 9o) is filtered with the first mask .

The maximum responses would occur at image locations in which a horizontal line
passed through the middle of the row. The second mask responds best to lines
oriented at +45. The third mask to vertical lines and forth to -45.
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FIGURE 10.7

(a) Image of a
wire-bond
template.

(b) Result of
processing with
the +45° line
detector mask in
Fig. 10.6.

(c) Zoomed view
of the top left
region of (b).

(d) Zoomed view
of the bottom
right region of
(b). (e) The image
in (b) with all
negative values
set to zero. (f) All
points (in white)
whose values
satisfied the
conditiong =T,
where g is the
image in (e). (The
points in (f) were
enlarged to make
them easier to
see.)
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10.2.4 Edge Models

* Edge detection is the approach used most frequently for
segmentation images based on abrupt (local) changes in
intensity.

* Edge models are classified accordingly to their intensity
profiles.

° A step edge : involves a transition between two intensity

l alibllE
FIGURE 10.8

From left to right,

models (ideal

) d representations) of
a step, a ramp, and
aroof edge, and
their corresponding

intensity profiles.

347



\ /

/' —

In practice, digital images have edges that are blurred and noisy, with the
degree of blurrlng determined principally by limitations in the focusing
mechanisms ( eg. Lenses in the case of optical image) and the noise level
determined principally by the electronic components of the image system.

In such cases, edges are closely modeled as having an intensity ramp profile .
The slope of the ramp is proportional to the degree of blurring in the edges.

In this model , we no longer have thin(1 pixel thick) path, instead, an edge point
now is anﬁ pomt contained in the ramp and the edge segment would then be a
set of such points that are connected.

The third model of an edge is so called - roof ed \/ s shown

in fig above.

Two nearby ramps edges in a line structure calle
Basically two ways of roof convex roof edge show... wco ...
Concave roof edge
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FIGURE 10.9 A 1508 X 1970 image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)
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Horizontal intensity
profile

First
derivative

Second
derivative

Zero crossing —/

ab

FIGURE 10.10

(a) Two regions of
constant intensity
separated by an
ideal vertical
ramp edge.

(b) Detail near
the edge, showing
a horizontal
intensity profile,
together with its
first and second
derivatives.
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean 0 and « = 0.0,0.1, 1.0, and 10.0, respectivelv. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.

Oooom
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean O and « = 0.0, 0.1, 1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.

=P e il -

352



e NSNS

—

/

——

Three fundamental steps performed in edge detection
1. Image smoothing for noise reduction 2. detection

of edge points
3. edge localization

10.2.5 basic edge detection

Detecting changes in intensity for the purpose of
finding the edges can be accomplished using first or
second order derivatives.

The image gradient it prd
First-order degisptives: X | _

pert]
OX

€S

)cation (x,y) is defined as the vector:

e The gradient of an rﬁg%e X,/
e Grad(f) =

)g_lc
o
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The magnitude of this vectors/f — mag(Vf) = [Gf + G;]}/2

a(x,y)=tan™ =
The direction of this vector: Gy

* Gradient operators: obtaining gradient of an image requirec ~omniting tha
partial deriv.

-1 -1 1

ab

FIGURE 10.13
One-dimensional
masks used to
implement Egs.
(10.2-12) and
(10.2-13).
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Detection of Discontinuities
Gradient Operators

—1 0 0 —1
Roberts cross-gradient operators sy o | 1 || 1] o
Raoberts
—1 -1 —1 -1 0 1
0 0 0 -1 0 1
Prewitt operators =~ === el ol el
Prewitt
—1 —2 —1 —1 0 1
Sobel operators == S R A | M O
1 2 1 -1 0 1
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Roberts operator

Sobel operator
Prewitt operator
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v' Prewitt masks are simpler to implement than sobel masks .

v" The sobel masks have better noise suppression (smoothing characteristics which makes them

preferable.

Prewitt masks for
detecting diagonal edges

Sobel masks for —
detecting diagonal edges

a b
c d

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.

0 1 1 —1 -1 0
-1 0 1 —1 0 1
-1 -1 0 0 1 1

Prewitt

0 1 2 =7 -1 0
-1 0 1 —1 0 1
-2 -1 0 0 1 2

Sobel
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Detection of Discontinuities
Gradient Operators: Example

ab

¢ d

FIGURE 10.10

(a) Original
image. (b) |G|,
component of the
gradient in the
x-direclion.

(C) |Gy
component in the
y-direction.

{d) Gradient
image, |G,| + |G,].

Vi z\GX\+\Gy\
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Detection of Discontinuities
Gradient Operators: Example

a b

¢ d

FIGURE 10.11
Same sequence as
in Fig. 10.10, but
with the original
image smoothed
witha5 X 5
averaging filter.
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Detection of Discontinuities
Gradient Operators: Example

ab

FIGURE 10.12
Diagonal edge
detection.

(a) Result of using
the mask in

Fig. 10.9(c).

(b) Result of using
the mask in

Fig. 10.9(d). The
input in bath cases
was Fig. 10.11(a).

0 1 2 —2 -1 0
—1 0 1 —1 0 1
'/ —1 0 0 1 2
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Module 4 :

s*Fundamentals, point, line and edge detection, detection of isolated point, line detection edge
models, basic edge detection [ 10.1,10.2.2 to 10.2.5]

Module 5:

**Thresholding , Region-based segmentation : [10.3, 10.4]

s*Representation : 11.1 {11.1.1to 11.1.6}



»Image segmentation divides an image into regions that are connected and have some similarity within the region
and some difference between adjacent regions.

»The goal is usually to find individual objects in an image.

» For the most part there are fundamentally two kinds of approaches to segmentation: discontinuity and similarity.
= Similarity may be due to pixel intensity, color or texture.

= Differences are sudden changes (discontinuities) in any of these, but especially sudden changes in intensity
along a boundary line, which is called an edge.

»Segmentation algorithms are area oriented instead of pixel oriented.
» The result of segmentation is the splitting up of image into connected areas.
»Thus segmentation is concerned with dividing an image into meaning regions.

» Applications of image segmentation:
Medical Imaging, Satellite imaging, Movement detection ,License plate recognition ,Robot navigation ...etc



10.2 Point, line and Edge Detection

Segmentation methods are based on detecting sharp, local changes in intensity.

Three types of image features in which we are interested are
v'isolated points

v'lines
and
v’ edges.

Edge pixels are pixels at which intensity of an image function changes abruptly , and edges (edge
segments) are set of connected edge pixels .

Edge detectors are local image processing methods designed to detect edge pixels.



» A line may be viewed as an edge segment in which intensity of the background on either side of the
line is either much higher or lower than intensity of the line pixels. Lines give rises to so called roof
edges.

» An isolated point may be viewed as a line whose length and width are equal to one pixel.

10.2.1 Background

»WKT the local changes in intensity can be detected using derivatives.
» Derivatives of the digital function are defined in terms of these differences.
» First order derivatives :

1. must be nonzero in areas of constant intensity

2. must be non zero at the onset of an intensity step or ramp

3. must be nonzero at points along an intensity ramp.



»Second order derivative :
1.must be zero in areas of constant intensity

2. must ne non zero at the onset and end of an intensity step or ramp

3. must be zero along intensity ramps

»Because we are dealing with digital quantities whose values are finite, the maximum possible intensity
change is also fine and the shortest distance over which a change can occurs is between adjacent pixels.

»We obtain an approximation to the first-order derivatives at point x of a one-dimensional function f(x) by
expanding the function f(x+Ax) into a Taylor series about x, letting Ax=1, and keeping only the linear terms

»The result is the digital difference.




v"We used a partial derivative here for consistency in notation when consider an image function of
two variables, f(x,y), at which time we will be dealing with partial derivatives along the two spatial
axes.

/Cle_ when f is a function of only one variable.

v"We obtain an expression for the second derivative by differentiating above equation with respect
to x




»Our interest is on the second derivative about point x, so we subtract 1 from the arguments in
the preceding expression and obtain the result.

»The above two equations satisfy the conditions regarding derivatives of first and second order.

»To illustrate this and also to highlight the fundament similarities and differences between first
and second order derivatives in the context of image processing consider the fig below. As
discussed in previous module.

ab
C

FIGURE 10.2 (a) Image. (b) Horizontal intensity profile through the center of the image,
including the isolated noise point. (c) Simplified profile (the points are joined by dashes
for clarity). The image strip corresponds o the intensity profile, and the numbers in the

boxes are the intensity values of the dots shown in the profile. The derivatives were
obtained using Eqs. (10.2-1) and (10.2-2).
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Summary the following can be concluded:
1. First order derivatives generally produce thicker edges in an image.

2. Second order derivatives have a stronger response to fine detail, such as thin lines, isolated
points and noise.

3. second —order derivatives produce a double-edge response at ramp and step transitions in
intensity.

4. the sign of the second derivative can be used to determine whether a transition into edge is
from light to dark or dark to light.

»The most common way to look for discontinuities is to scan a small mask over the image. The
mask determines which kind of discontinuity to look for.

2 FIGURE 10.1 A
R=Wz, +W,Z, ...+ WyZg = D W7, serEral 3 % 3 o | w | ow
i=1 mask. :

w, Wy Wy

w5 Wy Wy




10.2.2 Detection of isolated points

Point detection should be based on second derivative : Laplacian




Using Laplacian mask in below fig10.4, we say that the point has been detected as the location
(x,y) on which the mask is centered, if the absolute value of the response of the mask at that

point exceeds a specific threshold.

Such a point is labeled as 1 in the output image and all others are labeled as 0, thus producing a
binary image.




a
bcd

FIGURE 10.4

(a) Point
detection
(Laplacian) mask.
(b) X-ray image
of turbine blade
with a porosity.
The porosity
contains a single
black pixel.

(c) Result of
convolving the
mask with the
image. (d) Result
of using Eq. (10.2-8)
showing a single
point (the point
was enlarged to
make it easier to
see). (Original
image courtesy of
X-TEK Systems,
Ltd.)




10.2.3 line detection

» Next level of complexity is line detection.

» For line detection we can expect second derivatives to result in a stronger response and to produce
thinner lines than first derivatives.

»We can use the same laplacian mask shown above in fig 10.4(a) for line detection keeping in mind
that the double line effect of the second derivative must be handled properly.

»This is illustrated in below example.




ab
o

FIGURE 10.5

(a) Original image.
(b) Laplacian
image; the
magnified section
shows the
positive/negative
double-line effect
characteristic of the
Laplacian.

(c) Absolute value
of the Laplacian.
(d) Positive values
of the Laplacian.




The laplacian detector in fig 10.4, is isotropic, so its response is independent of direction,
Often interest lies in detecting line sin specified directions.

Consider the mask shown in below fig 10.6

—1 —1 —1 2 -1 —1 —1 2 -1 -1 —1 2

2 2 2 -1 2 -1 -1 2 -1 -1 2 -1

—1 —1 -1 -1 -1 2 —1 2 -1 2 —1 —1
Horizontal +45° Vertical —45°

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).



Suppose that an image with constant background and containing various lines (oriented at 0 ,* 45
and 90) is filtered with the first mask .

The maximum responses would occur at image locations in which a horizontal line passed through
the middle of the row. The second mask responds best to lines oriented at +45. The third mask to

vertical lines and forth to -45.
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FIGURE 10.7

(a) Image of a
wire-bond
template.

(b) Result of
processing with
the +45° line
detector mask in
Fig. 10.6.

(c) Zoomed view
of the top left
region of (b).

(d) Zoomed view
of the bottom
right region of
(b). (e) The image
in (b) with all
negative values
set to zero. (f) All
points (in white)
whose values
satisfied the
conditiong = T,
where g is the
image in (e). (The
points in (f) were
enlarged to make
them easier to
see.)




10.2.4 Edge Models

Edge detection is the approach used most frequently for segmentation images based on abrupt (local)

changes in intensity.

Edge models are classified accordingly to their intensity profiles.

A step edge : involves a transition between two intensity levels occurring ideally over the distance of 1

pixel.

In case of step edge, the image intensity abruptly changes from one value to one side of the discontinuity

to a different value on the opposite side.

abc

FIGURE 10.8

From left to right,
models (ideal
representations) of
a step, a ramp, and
a roof edge, and
their corresponding
intensity profiles.



»In practice , digital images have edges that are blurred and noisy, with the degree of blurring determined
principally by limitations in the focusing mechanisms ( eg. Lenses in the case of optical image) and the
noise level determined principally by the electronic components of the image system.

»In such cases , edges are closely modeled as having an intensity ramp profile . The slope of the ramp is
proportional to the degree of blurring in the edges.

»In this model, we no longer have thin(1 pixel thick) path, instead, an edge point now is any point
contained in the ramp and the edge segment would then be a set of such points that are connected.

»The third model of an edge is so called — roof edge, having characteristics shown in fig above.

» Two nearby ramps edges in a line structure called a roof.
» Basically two ways of roof convex roof edge shown above.

» Concave roof edge



FIGURE 10.9 A 1508 X 1970 image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)



Horizontal intensity ab

profie ~_FIGURE 10.10

(a) Two regions of
constant intensity
separated by an
Eirst ideal vertical
derivative ramp E‘:dgﬂ.

(b) Detail near
the edge, showing
a horizontal
intensity profile,

Second S
derivative together with its
first and second
derivatives.
Zero crossing —/
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean O and « = 0.0,0.1. 1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.
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FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean 0 and « = 0.0,0.1, 1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.
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Three fundamental steps performed in edge detection
1. Image smoothing for noise reduction 2. detection of edge points

3. edge localization

10.2.5 basic edge detection

Detecting changes in intensity for the purpose of finding the edges can be accomplished using
first or second order derivatives.

The image gradient and its properties

First-order derivatives:
o The gradient of an image f(x,y) at location (x,y) is defined as the vector:

o Grad(f) = _G - of
vi=| "|=|J
_Gy_ oy




The magnitude of this vector: Vi = mag(Vf) = [Gz n Gz]%
X y

41 G
The direction of this vector: a(X,y)=1tan ' G—X
y

Gradient operators: obtaining gradient of an image requires computing the partial
derivatives of

—1 —1 1

ab

FIGURE 10.13
One-dimensional
masks used to

implement Egs.
(10.2-12) and
(10.2-13).




Detection of Discontinuities
Gradient Operators

-1 0 0 -1
Roberts cross-gradient operators s o | || 1] o
Roberts
-1 -1 -1 -1 0 1
0 0 0 -1 0 1
Prewitt operators =~ =) R
Prewitt
-1 —2 -1 -1 0 1
Sobel operators =) S N | e
1 2 1 —1 0 1




Roberts operator

Sobel operator

Prewitt operator




v’ Prewitt masks are simpler to implement than sobel masks .

v The sobel masks have better noise suppression (smoothing characteristics which makes them preferable.

0 1 1 —1 —1 0
Prewitt masks for m | 1| o | 1|l alo|
detecting diagonal edges
—1 —1 0 0 1 1
Prewitt
0 1 2 —2 —1 0
Sobel masks for —)
. ] -1 1 —1 1
detecting diagonal edges ’ ’
-2 —1 0 0 1 2
ab
¢ d Sobel

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.




Detection of Discontinuities
Gradient Operators: Example

ab

¢ d

FIGURE 10.10

(a) Original
image. (b) |G,].
component of the
gradient in the
x-direction.

(€) |Gy].
component in the
y-direction.

(d) Gradient
image, |G| + |G,|.

i z‘GXH‘Gy‘




Detection of Discontinuities
Gradient Operators: Example

a b

¢ d

FIGURE 10.11
Same sequence as
in Fig. 10.10. but
with the original
image smoothed
witha$§ X §
averaging filter.



Detection of Discontinuities
Gradient Operators: Example

a b

FIGURE 10.12
Diagonal edge
detection.

(a) Result of using
Lhe mask n

Fig. 10.9(c).

(b) Result of using
the mask in

Fig. 10.9(d). The
input in both cases
was Fig. 10.11{a).




Module 5:
**Thresholding , Region-based segmentation : [10.3, 10.4]

**Representation : 11.1 {11.1.1 to 11.1.6}




10.3 Threshold

10.3.1 Foundation :

The basics of intensity thresholding

»Suppose the intensity histogram shown below fig a corresponds to an image f(x,y), composed of light
objects on dark background, in such a way that object and background pixels have intensity values
grouped into 2 dominant modes.

ab

FIGURE 10.35
Intensity
histograms that

| h H‘ | ‘ ‘ can be partitioned
b ingl
||I|||‘ ||I | ”‘ || - Il‘ ‘llll-f.ll” ||-I-I‘ ‘ll - Eﬁgesj‘l;_s:lglanagng
T T )

(b) by dual
thresholds.




»One way to extract the objects from the background is to select the threshold, T, that separates these
modes.

»Then any point(x,y) in the image at which f(x,y) > T is called an object point

» otherwise, the point is called background point.

»The segmented image g(x,y) is given by

1 if f(x,y)>T
IY=10 i fxy)<T

»Where T ----constant appliable over an entire image,
»The process given in this equation is referred as global thresholding.
»When the value of T changes over an image, we can use the term variable (local) thresholding.

» This local thresholding in which the values of T at any point (x,y) in am image depends on properties of a
neighborhood of (x,y)

»If T depends on the spatial coordinates (x, y) themselves, then variable thresholding is often referred as
dynamic or adaptive thresholding.



»Fig b shows a more difficult thresholding problems involving a histogram with thee dominant modes
corresponding, for example to two types of light objects on a dark background.

»Here multiple thresholding classifies a point (x,y) as belonging to the background if f(x,y)<T1, to one
object class if T1< f(x,y)<T2, and to other object class if f(x,y)>T2.

( a, if f(x,y)>T2

»G(xy)=<b, if T1<f(xy)<T2
o if f(xy)<T1

\
Where a, b, c are three distinct intensity levels.

»The success of intensity thresholding is directly related to the width and depth of the valley(s) separating
the histogram modes.

»The key factors affecting the affecting the properties of the valley(s) are
= separation between the peaks

= The noise contents in the image

= The relative size of the objects and background

= The uniformity of the illumination source

= The uniformity of the reflectance properties of the image



The role of noise in imaging threshold

Wkt how noise affects the histogram of an image.

abc
de f

FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard
deviation of 10 intensity levels. (¢) Image with additive Gaussian noise of mean 0 and standard deviation of
50 intensity levels. (d)—(f) Corresponding histograms.




»Fig 10.36(a) shows a noise free image so its histogram consists of two spikes modes as shown in
fog 10.36(d).

»Segmenting this image into two regions is a trivial task involving a threshold placed anywhere
between the two modes.

»Fig 10.36(b) shows the original image corrupted by Gaussian noise of zero mean and a standard
deviation of 10 intensity level.

» Although the corresponding histogram modes are now broader, their separation is large enough so
that the depth of the valley between them is sufficient to make the modes easy to separate.

» A threshold placed midway between the two peaks would do a nice job of segmenting the image.

»Figure 10.36© shows the image corrupted by Gaussian noise of zero mean and a standard deviation
of 50 intensity level.

» From histogram it shows the situation is much more serious as there is no way to differentiate
between two modes.

» Little hope of Finding a suitable threshold for segmenting this image



The role of illumination and reflectance

0 63 127 11' 255| [0 0.2 0.4 0.6 08 1| [0 6 YL 191 255

abc
de f

FIGURE 10.37 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (¢) Product of (a) and (b).
(d)—(f) Corresponding histograms.




»Figure 10.37(a) is the noisy image and from (d) shows it histogram. This image is easily segmentable with a
single threshold.

» The effects of non uniform illumination is illustrated by multiplying the image in fig 10.37(a) by a variable
intensity function such as the intensity ramp fig (b) the result is shown in fig 10.37(c) and the respective
histogram fig (e-f) .

»As in fig 10.37(f) the deep valley between peaks was corrupted to the point where separation of the modes
without additional processing is no longer possible.

»|llumination and reflectance play a central role in the success of image segmentation using thresholding or
other segmentation techniques.

» Before image segmentation, these factors need to be controlled by the following approaches.

» First Correct the shading pattern directly. Eg.: non uniform illumination can be corrected by multiplying the
image by the inverse of the pattern, which can be obtained by imaging a flat surface of constant intensity.

»The second approach is to attempt to correct the global shading pattern via processing . Eg: the top-hat
transformation .

»The third is to work-around non-uniformities using variable thresholding .



10.3.2 Basic Global Thresholding

»When the intensity distributions of the objects and background pixels are sufficiently distinct, it is possible to
use a single (global ) threshold applicable over the entire image.

»|n most of the applications, there is usually enough variability between the images, that even if global
thresholding is suitable approach an algorithm capable of estimating automatically the threshold value for
each image is required.

» The following iterative algorithm can be used for this purpose

L i) > T
Xy} = A 3.1
elr, v) {“ Py < T (10.3-1)



1. Select an initial estimate for the global threshold, 7.

2. Segment the image using T in Eq. (10.3-1). This will produce two groups of
pixels: G, consisting of all pixels with intensity values > T, and G, consist-
ing of pixels with values = T.

3. Compute the average (mean) intensity values m; and m, for the pixels in
G, and G,, respectively.

4. Compute a new threshold value:

1
T E(m] + )

5. Repeat Steps 2 thrﬁugﬁ 4 until the difference between values of 7 in suc-
cessive iterations is smaller than a predefined parameter AT



» This simple algorithm works well in situation where there is reasonably clear valley between the
modes of the histogram related to the objects and background.

> AT is used to control the number of iteration.

ab
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FIGURE 10.29

(a) Original
image. {(b) Image
histogram.

(¢) Result of
segmentation with
the threshold
estimated by
iteration.
(Original courtesy
of the National
[nstitute of
Standards and

| ! Technology.)




10.3.3 Optimum Global Thresholding using Otsu’s method

Thresholding may be viewed as a statistical-decision theory problem whose
objective is to minimize the average error incurred in assigniag pixels to iwo
or more groups (also catled classes).

This problem is known to have an elegant closed-form solution
known as the Bayes decision rule

The solution is based on only two parameters: the probability density function
(PDF) of the intensity levels of each class and the probability that each class
occurs in a given application.



The approach discussed in this se-.s:tic:sﬁ, called Otsu's method (0:55[1979]},

The method is optimum in the sense that it maximizes the between-class variance,
a well-known measure used in statistical discriminant analysis. -

The basic idea is that well-thresholded classes should be distinct

with respect to the intensity values of their pixels and, conversely, that a thresh-
old giving the best separation between classes in terms of their intensity values
would be the best (optimum} threshold.

In addition to its optimality, Otsu’s method has the important property that it is based
entirely on computations performed on the histogram of an image, an easily obtainable 1-D array.



Let {0,1,2,...,L — 1} denote the L distinct intensity levels in a digital image
of size M X N pixels, and let »#, denote the number of pixels with intensity . The
total number, M N, of pixels in the image 1Is MN = g + 0y 4+ 0y + o4 15,
The normalized histogram (see Section 3.3} has components p; = n,/MN, from
which it follows that

L~ '
Spi=1  p=0 (10.3-3)
=)

Now, suppose that we select a threshold T(k} = &£, 0 < k <= L — 1, and use it
to threshold the input image into two classes, C; and C,, where (' consists of
all the pixels in the image with intensity values in the range [0, k] and C; con-
sists of the pixels with values in the range [ k+1,L-1 . Using this threshold.
the probability, P (k). that a pixel is assigned 10 (i e.. thresholded into) class €
1S given by the cumulative sum

k
Pi(k) = 20.0.- (10.3-4)



r=u

Viewed another way, this is the probability of class C; occurring. For example,
if we set &k = 0, the probability of class C; having any pixels assigned to it is
zero. Similarly, the probability of class C; occurring is

L-1

AU = 3 p=1- B (103-5)

From Eq. (3.3-18), the mean intensity value of the pixels assigned to class C, is

my(k) = 2 iP(i/C))

}=

k :
_Zﬂ iP(C\/i)P(i)/ P(Cy) (10.3-6)

k

=



- L |

- where Fi(k) is given in Eq. (10.3-4). The term P({/C,} in the first line of
Eq. (10.3-6) is the probability of value i, given that i comes from class C;. The
second line in the equation follows from Bayes’ formula:

P(A/B) = P(B/A)P(A)/P(B) o

The third line foliows from the fact that P(C,/i). the probability of C, given i,
is 1 because we are dealing only with values of i from class C,. Also, P(7) is the
probability of the ith value, which is simply the ith component of the his-
togram, p;. Finally, P(C}) is the probability of class C;, which we know from
Eq.(10.3-4) is equal 10 P(k).

Similarly, the mean intensity vaiue of the pixels assigned to class C; is

L=
my(k) = 2 iP(i/Cy)
i=k+] (103_?)

Pz(k) E P

i=k+1



The cumulative mean (average intensity) up to level k is given by

K -

mik) = Xip; (10.3-8)

i=0
~and the average intensity of the entire image (i.e., the globa/ mean) is given by

L-
M = Eﬁ":‘ (10.3-9)
i=0

The validity of the following two equations can be verified by direct substitution
of the preceding results:

Py + Poms, = mg (10.3-10)

and
P+ P =] (10.3-11)

where we have omitted the ks temporarily in favor of notational clarity.



In order to evaluate the “goodness” of the threshold at level k we use the
normalized, dimensionless metric

P = (10.3-12)

oolehs

where o4 is the global variance [i.e., the intensity variance of all the pixels in
the image, as given in Eq. (3.3-19)],

L-1
0% = 2 (i = mg)p, (10.3-13)
i=0
and o'} is the between-class variance, defined as

op = Piimy — mg)’ + Po(my — mg)’ (10.3-14)

This expression can be written also as

ol = P Ps(m - my)
oo e (10.3-15)

_(mgh — ”’I)i
Pl - B)



Reintroducing k, we have the final resulis:

2
k
alky =284 (10.3-16)
TG
and
2
: [mePi(k) ~ m(k)]
(k) = (10.3-17)
P(k)[1 ~ Pi(k)]
Then, the optimum threshold is the value, k*, that maximizes o5 (k):
oy (k*) = max o%(k) (10.3-18)

D=k=[-]|
Once k* has been obtained, the input image f(x, y) is segmented as before:

1 i y) > k*
g(x.y) ) {n if f(x, y) = k*

.

(10.3-19)



forx =0,1,2,.... M —landy = (,1,2,..., N = 1. Note that all the quan-

tities needed to evaluate Eq. (10.3-17) are obtained using only the histogram

of f(x, y). In addition to the optimum threshold, other information regarding
the segmented image can be extracted from the histogram.

The normalized metric 5, evaluated at the optimum threshold value, n{k*).
can be used to obtain a quantitative estimate of the separability of classes.
which in turn gives an idea of the ease of thresholdmg a given image. This mea-

sure has values in the range

0 < pk*) = 1 (10.3-20)

The lower bound is attainable only by images with a single, constant intensity
level, as mentioned earlier. The upper bound is attainable only by 2-valued
images with intensities equai to Gand L — |



Otsu’s algorithm may be summarized as follows:

1. Compute the normalized histogram of the input image. Denote the com-
ponents of the histogram by p,,i = 0,1,2,..., L = 1,
2. Compute the cumulative sums, P(k), for k =0,1,2,...,L — 1, using

Eq.(10.3-4).
3. Compute the cumulative means, m(k), for k = 0,1,2,..., L — 1, using
Eq. (10.3-8). *

4. Compute the global intensity mean, mg, using (10.3-9).

§. Compute the between-class variance, ai(k), for k =0,1,2,...,L -1,
using Eq. (10.3-17).

6. Obtain the Otsu threshold, k*, as the value of k for which o}(k) is maxi-
mum. If the maximum 1s not unique, obtain k* by averaging the values of
k corresponding to the various maxima detected.

7. Obtain the separability measure, n*, by evaluating Eq. (10.3-16) at
k = k*.




10.3.4 Using Image smoothing to improve Global Thresholding

As noted in Fig. 10.36, noise can turn a simple thresholding problem into an
unsolvable one. When noise cannot be reduced at the source, and thresholding
is the segmentation method of choice, a technique that often enhances perfor-
mance 1s to smooth the image prior to thresholding, We illusirate the approach

with an example.

Figure 10.40(a) is the image from Fig. 10.36(c), Fig. 10.40(b) shows its histogram,
and Fig, 10.40{c) 1s the image thresholded using Otsu's method.

Every black point in the white region and every white point in the black region is a
thresholding error, so the segmentation was highly unsuccessful.

Figure 10.40G{d} shows the result of smoothing the noisy image with an averaging mask of size
5 X 5 {the image is of size 651 X 814 pixels), and Fig. 10.40(e) is its histogram.
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(a) Original
image.

(b) Histogram
(high peaks were
clipped to
highlight details in
the lower values).
d 63 | 127 191 255 (c) Segmentation
result using the
basic global
algorithm from
Section 10.3.2.
(d) Result
obtained using
Otsu’s method.
(Original image
courtesy of
Professor Daniel
A. Hammer, the
University of
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FIGURE 10.40 (a) Noisy image from Fig. 10.36 and (b) its histogram. (c) Result obtained using Otsu’s method.
(d) Noisy image smoothed using a5 X 5 averaging mask and (e) its histogram. (f) Result of thresholding using
Otsu’s method.
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FIGURE 10.41 (a) Noisy image and (b) its histogram. (c) Result obtained using Otsu’s method. (d) Noisy
image smoothed using a 5 X 5 averaging mask and (e) its histogram. (f) Result of thresholding using Otsu’s
method. Thresholding failed in both cases.




10.3.5 Using Edges to improve Global Thresholding

Based on the discussion m the previous four sections, we conclude that the
chances of selecting a “good™ threshold are eghanced considerably if the his-
togram peaks are tall, narrow, symmetric, and séparated by deep valleys

One ap prbach for improving the shape of hustograms is to consider Dnlﬂx those pixels that
lie on or near the edges between ohjects and the background.

An iromediate and obvious improvement is that histograms would be less dependent on the relative

sizes of objects and the background. For instance, the histogram of an image composed of a small object
on a large background area (or vice versa) would be dominated by a large peak because of the high concentratior

of one type of pixels,

We saw in the previous section that this can lead (o failure w thresholding.



If only the pixels on or near the edges between objects and background
were used, the resulting histogram would have peaks of approximately the
same height. In addition. the probabilitv that anv of those pixels fies on an object
would be approximately equul 1o the probability that it lies on the back-
ground, thus improving the symmetry of the histogram modes. Finally. as indi-
cated in the following paragraph. using pixels that satisly some simple
measures based on gradient and Laplacian operators has a tendency to deepen
the valley between histogram peaks




