BMS INSTITUTE OF TECHNOLOGY AND MANAGEMENT

Course Name:	IMAGE PROCESSING
Course Code:	17TE655
Semester :	6th semester
Prepared by :	Prof. Thejaswini S

CONTENTS

SL. No.	Module	Page No.
1	Module 1	$1-25$
2	Module 2	$26-101$
3	Module 3	$\mathbf{1 0 2 - 2 2 1}$
4	Module 4	$222-360$
5	Module 5	361-420

Digital Image Processing
Module 1
Syllaby: What is DIP?, Origins of DIP, Examples of Fields that use DIP. Fundamental Steps in DIP. Components of an IPsistern. Elements of Visual Perception. Image Sensing \& Acquisition, Image Sanpligy \& Unentization Some basic releforships b / n pixels, Linear $\$$ Nornlineal operations.
What is Digital Image Processing? (DIP) An image may be defined as a $x-D$ function $f(x, y)$ whee $x+y$ ace spatial (plane)
coordinates, is the amplitude of f at any pair of cobdinahes (x, y) is called the intensity or gray level of the image at that point.

When x, y os intensity values of f ace all finite \& discrete, we coll the image a Digital Image
DIP:- Peocening f digital images by means of a digital computer.
The elements. of digital image- pixels, pels or pichuce elements of image elements. pixel is widely used

1) Image peoarsig \rightarrow Ils \& olpace images.
2) Image Andyis. (Image Understanding).
3) Compute vision.
2. The origins of DIP :-

One of the first appns if digital images was in the 1 newspaper industry, when pictures ween first sent by Submarine cable bin London \& Newlork.
Introduction of the Baetlane cable pichree transmission system in the early 1920 s reduced the time lequiled to transport a picture caccors the Atlantic from more than a week to less than 3 hrs.
specialized printing equipment coded pictures fir cable transmission is then reconstructed them at the receiving end:
Some $f^{\text {the }}$ initial problems in improving the visual quality of these early digital pichrees wee e elated to the selection of printing procedures \& the disteibaction if intensity levels.
Key advances made in the field of computers like, transistors, ICs, s / w libe cobol, Fortran, μP \& VLSI de helped the advancement in $D I P$.

1) Garmma-Ray Imging: Nucleal Medicirl \& Astronomical. Obsee vations.

Complete bone scon bone pathology $<$ Tumsis.
\rightarrow PET (Posithon Emissim Tomogighy
(IIte to x-Roy fomoglydny (III le to x-Roy to mogeydy)

X-ray Imagin: Medival diagnostics, industly
Angiogriphy \rightarrow nojot appn-cmages of (Angiogrem) CAT-Compnteized Axial Tomography.
Imaging in UV band: Lithography, industeial inspection, miceosopy, Lases, biological imasing \& asteonomind obseevatims.
Imaging in the visible s Infared Bands: Light miccoscopy, asteonomy, remote sensing, industiny \& law en fricement.
Light micloscopy: Phaimaceuticals \& miclosinspection to matecials chalacterizatim.
Remotesensir: Satellite images - monitring environmend conditions. on the planet, veather obsecvatim s peediction also are mejo appn 8 meelispectiol imaxing form satellites.

Automated v visual inspection o manufacheed goods Pills, unfilled bottles, burned takes, damaged lens etc before packing, Lehicle no ready etc or kufic moviting.

Imaging in the uwave band: Radar \rightarrow waves con penetrate the' clouds, ice, dry sad etc.
Imaging in the Radio band: Medicine s asteono MRI (magnetic Resonance Imagip) \rightarrow Medicine. places a patiat in a powerful magnet a parses radiowaंves the' his/hee body in shot pulses.
Examples in which other imaging modalides an used

Acoustic imasijg election microscopy synthetic imaging (compnter-geneeted)

Mincul x oil exploration

Fundament el steps in Digital Image Processing. outputs of these processes genceally ace images.

Fundamental steps in DIP
(1) Damage acquisition: x first process in above fig. (D,P) It involves Image collection, peepeocersing (such as soling.)
(2) Image filtering s enhancement: It is a ploces of manipulating an image so that more suitolle for a specific app." Specific \rightarrow Technique which is suitable for x-Roy enhancement is not sciteble for satellite inge
(3) Image Restration: Improves the appearance of an ionage based on mathematical model.
Enhancement \rightarrow sufeche

Restration \rightarrow Objective.
(4) Color image processing: This area is gaining importance because of Significant increase in the use of images over the Internet.
(5) Wavelets. (\& multiresolution processing): Representing images in various degrees of resolution. ines are subdivided into similar legions.
(6) Compression: Reduces the storage required to save an image or bandwidth required to transmit it. EG:- ZIP, JPEG
(7) Morphological processing: Tools for extracting Ponage components that are useful in the lepleastation \& description of shape.
(8) Segmentation: Procedure partitions an inge into its constituent pacts of objects.
(a) Representation \& desceiptim: ope of eegrinentation stage. region or all the polled as feature selection. Desceiptim'. also cole attributes that result in some deals with extracting oration of interest. quantitative in fora Label to an object based
(10) Recognition: assigns a

Imageplocessing is a nethod to connect an inage into digitrel firm pupen some opeeations on it, in ordee to get an enhanced inage or to exkact some useful infn grom it.

3 steps:-
(1) Importing an Inage witn optical sconnee or by digitit photoglephy.
(2) Analyzing \& manipulating the inage whinh includes data complestion \& image enhancement
(3) Onfput inage - result $<$ alteud inage repst based on inage analyats.

Components of an IP system

Sensing:- Q elements ace eqqueal PPhysical dectce is encesy ladiated eneesy ladiated by wish to ingege.
digitize.
(Ole of device to dyislefin)

Specialized IPH/u:
Digitizee + ALV (Arithoratic/logind opts 6 in palallel)
Eg'- Aveeaging.

Comphtee: - y P PC to supee comphtee.
\rightarrow opriline IP tasks.
Softorere:- specialized module
\rightarrow specific tasks
Matlab, C, Octore, Scilab, Plython, Java.
)
Mass Storage:- is a must
1024×1024 - size in which each pixel pixels is an 8 bit quatity.
1 inge \rightarrow requses 1 mbyte 8 stoge.

Starge is measuied in bytes (8 buts $=1$ byte)

$$
\rightarrow \text { peovide }\left\{\begin{array}{l}
200 m \\
\text { sceoll } \rightarrow \text { vecinal shift } \\
\text { pam } \rightarrow \text { Hizonhe shift. } \\
\text { graphic cseds. }
\end{array}\right.
$$

Disploys:- cols movitios t graphic coeds.
Haedcopy devices \rightarrow laser printers, film comeus, heat sensitive devices, injet unter CD ROM disks key consideotin is BL.
N/W:inage tansonistm Optinl fiber \rightarrow
\& beoad sues.

Elements of Visual Peecoption

Horizonkl crorssectm 8 heman ege

Stectree of huoth
\rightarrow avg diamete 20 mm
$\rightarrow 3$ membanes
(1) Cornea \& Sclera ontee covel
(2) Choroid
(3) Retina.
\rightarrow Cornea \rightarrow tough, transparent tinsue
Sclera \rightarrow Dpague membrane
\rightarrow choroid \rightarrow below Sclera
(2) NLW of blood vessels \rightarrow major sonece quekition to the eye.
(3) even single infuly \rightarrow not secions - blocles blood flow ex. light entery the eye.
(5) choroid $\sqrt{\text { In's }}$ clialy body.

Isis contacts or expands to contcol the amount of light 8 that enters eye.

Pupil - Varies in diameter 2 to 8 mm .
Front of the wis \longrightarrow Visible pigment of the eye back \longrightarrow black pigment.

Lens $\rightarrow x$ made up of concenteil loges of fibrous cells \& is suspended by fleer that attach to the ciliary body.
, contains 60 to 70% water, 6% fat 5 more plotien.
y colored by a slightly yellow pigmentation p ses with age.
$>$ Excessive clouding of the eye \longrightarrow Cataracts lead to poor color discrimination \& lois of clear vision.

* UV IR light due absorbed by peatiens whin the lens if excessive, con damage the eye,

Retina x Innermost membrane of the eye, which lines the inside of the wall's posters portion,
) x when light from an object imagined on retina, eye is property focussed,

- Two classes of receptor F cones

Cones - $7-8$ million located primally on the central portion fore retina, called the fovea, au sensitive to cols.
cone vision - photopic / bright light vision.

Rods - 75 to 150 millim; as many receptirs ace covapelted to a single nerve, reduce the amount i detall-recoptre: Scotopic/elim-light v vision.

Distribution 8 rods
s cones in the retina section of the light eye parsing the o the legion of emergence of the optic nerve from the eye.

The absence of receptor - blind spot.
Receptor density is measured in deglues from the fovea.

$$
\begin{aligned}
& \text { n the fovea. } \\
& \frac{15}{100}=\frac{h}{17} \Rightarrow h=2.55
\end{aligned}
$$

Image formation in the eye

Cones \& Rods \rightarrow convect light into nerve impulses sent to the brain along the optive nerve.
Images formed anywhere otheethan on the retina ace not transmitted effectively to the brain os hence Visual impalement
eyperight, visim, seeing \longrightarrow Visual perception.

* In human eye, distance b/n the lens \& the imaging proper focus is obtained by varying the shape ofcomplish this, flattening The fibers in the ciliary body accomplish distant of near objects respect or thidening the lens for distr -vely.

Perception then bokesplace by the relative excitation of light receptors which transfix radiant energy into electrical impulses that are ultimately decoded by the brain.

Brightness Adaptation \& Discipnivation
Experimenter evidence indicates that subjective brightens (intensity as perceived by the human visual system) is a logarithmic function of the light intensity incidence on the eye

Erightress adaptatm - changry its ovecoll sensining.
Disviminatio':- $\quad 0^{I+\Delta I} \quad \frac{\Delta I C}{I}=$ water ratio.
$\Delta f_{e} \rightarrow$ incurrent if illuminate disceiminable 50\%. If the time with back geol illuminator I

Weber ratio as a for of intensity.

Lineal Vs Nonlineal Operations
One of the nost imp. clasigicatim of an ip method is whethee it is lineal or nomlinae.

$$
\begin{aligned}
\text { Lineviy }=\text { additivy } & + \text { homogeneity } \\
H[f(x, y)]=g(x, y) & H \rightarrow \text { lincee opecatr } \\
H\left[a_{i} f_{i}(x, y)+a_{j} f_{j}(x, y)\right] & =a_{i} H\left[f_{i}(x, y)\right]+a_{j} H\left[f_{j}(x, y)\right] \\
& =a_{i} g_{i}(x, y)+a_{j} g_{j}(x, y) \\
\sum\left[a_{i} f_{i}(x, y)+a_{j} f_{j}(x, y)\right] & =a_{i} \sum f_{i}(x, y)+a_{j} \varepsilon f_{j}(x, y) \\
& =a_{i} g_{i}(x, y)+a_{j} g_{j}(x, y) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& f_{1}=\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right] \& f_{2}=\left[\begin{array}{ll}
6 & 5 \\
4 & 7
\end{array}\right] \\
& a_{1}=1 \& a_{2}=-1 .
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=1 \& a_{2}=-1 . \\
& \max \left\{1\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right]+(-1)\left[\begin{array}{l}
65 \\
47
\end{array}\right]\right\}=\max \left\{\left[\begin{array}{cc}
-6 & -3 \\
-2 & -4
\end{array}\right]\right\}=-2 / 1
\end{aligned}
$$

$$
1 \max \left\{\left[\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right]\right\}+(-1) \max \left\{\left[\begin{array}{ll}
6 & 5 \\
4 & 7
\end{array}\right]\right\}=3+(-7)=-4
$$

max is honlineal.
Lincae opecations are exceptionally imp.

Imuge Sensing s Acquisitim
Most of the images in which ve aee integested aee genesated
 absopton of eneegy from the sonece by the eloments of the 'slene' being imaged.
E.'- illuminstion may originete from a sowece of electormagastic onagy such as Radae, infared, \& x-ray system.
x-rays pars the' a patient's body for the phepose of agneeating adiagonastic x-ray film.
(a) Single imasing sens

Thece plincipal sersor arrangenats used to koneform illumination eneegy into
(a) Single Imaging Sensor:

(b)
(c) Array sensa

c)

Pdes: - Incoming energy is kangforned inb a velteos by to combination of ilp electical povee serse rratesjal ie rapsonete to the pacticulal type of energy being detested.

The olp Vtg wif is digitized to get diritel quarts.
Image Acquisition using a lingle Sinst
Flg a. shous the components of a single lerdt. , photodicdis which is contructed of silicon matitial shoxe o/p it is prifttional to light.
) The use of a filtee infiont of a sinsit impiovet ielectivat.
EG:- Green filtee favows light in the guen band if the def speckum. ue sensor olp will be skongel for quen ligtt tan fir othee components in the visible speckion.
fis shos an areangemat uxd in hig-puciom sconning, whece a film negatie is mounter onb a dum whose meclanical rotation peovides displacionet on ore diras.

Image Acquisition using Sensa Staps

Image Acquisition Toolbas \rightarrow eneble you to connect Ondustcial \& scientific cameras to matlab/simulint
Lineal Sensorsteip: In-line Sensirs ace uxed loutinely to airboine inaging apprs, in which the inaging system is mounted on an ailceyft thet flies at a constont altitude is speed ovee the geographical alea to be inaged.

1-D imaging sensor skips that lespond to valious bands of the electomagnetic specteum dre mounted \perp^{r} to the dielction of flight.

Radiance - Totel amourt of energy that flows from the light sonce (ω)
Luminance (lumens L) $=$ measuce of the asnount 8 eneegy as obsever percieves frem a light source.
Brightress - Sufjective desciptr of light perception peactidally impossible to measue.
A rotating x-ray sonece provides illumination \& the senors opp. the sonce collect the x-ray sovides illuminatins
(2) This is the bassis opp eneyry thet passes the medich industial C AT T Axial Tomogrephy.

CAT-plinciple is also used in MRI-Magnetic Resonance Ionaging \& $P E T$-Positim Enission Tomoglaghy.

Image Acquisition Using Sensi Arrays

Typiod Sensir - CCD - Clage Conpled Device
Digirl comeses - predominant. \& for austonomial apprs reoise reduction is achieved by letting the senso integeree the ilplight signal ovee mins of even haves.
x Motion is not requied

II chaptee:- Some brovic Peleniontipe betoven pinels

$$
f(x, y) \rightarrow \text { imege }
$$

(1) Neighbers of a pixel :-.
d pioel p at coordinates (x, y) has 4 hrigartil y

Vectical neigubors

$$
N_{4}(p) \text {-red. } \quad N_{D}(p) \text {-blact. }
$$

3 type
(a) 4-neighbors, N_{4}
(b) Diagonl reighbs, N_{D}
(c) 8 -neghbis, N_{8}.

Together $N_{g}(p)=\underset{4}{N}(P) \cup N_{D}(P)$
(11) Adja ency:

Connectivity bin pixels is a fundarrent concept that Simplifies the def of numerous digital image concepts, such as regions and boundaries
To determine if the 2 pixels ace commected/adjacent ot not, then are 2 conditions:
(a) Two pixels should be neighbors
(b) Their grey levels should be similar.

3 types of adjacencies cree defined: (a) 4-adjacency 8 -adjacena
Binary image \rightarrow graylivel values ace 0 or 1 .
(a) 4-adjacency:

2 pixels p and q are soled 4 adjacent if p \&q have same value $(0 \& 1)$ \& q is in $N_{4}(p)$

$$
\begin{align*}
& 000 \\
& 0 \begin{array}{ll}
0 p 1 q_{1} & p \& q_{1} \rightarrow 4 \text { adjacent } \\
0 & p q_{2} 0
\end{array} \begin{array}{l}
\text { p\& } q_{2} \rightarrow \text { not adjacent. }
\end{array} .
\end{align*}
$$

(b) 8-adjacency:

$$
\begin{array}{llll}
1_{q 1} 0 & 0 & p \& q_{1} \rightarrow 8 \text { adjacent } \\
0 & 1 p & 1 q_{2} & p \& q_{2} \rightarrow-i- \\
0 & 0 & 0 q_{3} & p \& q_{3} \rightarrow \text { are not } 8 \text {-adjacent }
\end{array}
$$

(c) $\quad m$-adjacent (mixed):
(i) q is in $N_{4}(p)$
(ii) q is in $N_{D}(p)$ \& $\left\{N_{4}(p) \cap N_{4}(q)\right\}$ is not some as p.

Graylevel?
Two pixels p \& or with values
In binate image $\rightarrow V=\{1\}$ Set of gray (18)
from V are 4 -adjacent if g is livelvalues used to define adjacency. in the set $N_{4}(p)$

$$
V=\{11,12 \ldots 25\}
$$

8-adjacent if q is in set $N_{8}(p)$.
m-adjacent if q is in $i N_{4}(p)$ sri) $N_{D}(p)$ and the set has no pixels whose values dee form V.
ie (ii) q is in $N_{D}(P) \& \quad\left\{N_{4}(p) \cap N_{4}(q)\right\} \notin V$.

4-adjacency:

$$
V=\{0,1,2,3,4\}
$$

$p \& q_{1} \rightarrow 4$ adjacent

$$
\begin{aligned}
& p \& q_{3} \rightarrow-1- \\
& p \& q \rightarrow \text { not. }(\because 20 \text { in not in } \mathrm{V})
\end{aligned}
$$

$p \& q_{4} \rightarrow \operatorname{Not}(\because 1$ is not 4 neighs $)$

8-adjacenly

40	4	1929
3	$0 p$	20_{43}
80	75	5054

$$
\begin{aligned}
& p \& q_{1} \rightarrow 8 \text { adjacent } \\
& p \& q_{2} \rightarrow 8 \text { adjacent } . \\
& \text { Not } 8-a d
\end{aligned}
$$

$p \& q_{4} \rightarrow$ Not
m-adjacency

$p \& q_{2} \rightarrow$ not m-adjanct

$$
p \& q_{2} \rightarrow q_{3} \rightarrow \text { madjacest. }
$$

(iii) Connectivity - 2 pixels are connected if they are adjacent

Two subsets ace connected or adjacent if some pixel in S_{1} is adjacent to some pixel in S_{2}.

$$
V=\{1\} .
$$

(iv) Regin:-
R is a subset of

Resin in an inge.
Every pixel in R is connected to other pixels in R, then $R \rightarrow$ Region
v) Boundary:- Set i pixels in the regin that have one or more neighbors that are not in R.

Edge of aregin \rightarrow Boundary.

(vi) Path - count of connected pixels. $=$ Lerget o path. If first pixel $=$ last pixel then closed path. n. Onoostimo

Pans
A digithl pathe b/n pixel p having co-mdinates (x, y) to pixd q with (u, v) cooidinates is a sequence of connected piads $(x, y) \quad\left(u_{0}, y_{0}\right)\left(x, y_{1}\right) \ldots(u, v)$

' enger of the path is courd of connected pioch
If firt pixel is same as lost pivel u $(x, y)=(u, \omega)$ it is colled cloed pth
0) Distance measule:- D' (p, q) Distence b/n $p 5 q$.
(i) Dis $(p, p) \geqslant 0$ If $p=q \Rightarrow \operatorname{Dis}(p, q)=0$
(ii) $\operatorname{Dis}(p, v)=\operatorname{Dis}(q, p)$
(iii) $\operatorname{Dis}(p, z) \leqslant \operatorname{Dis}(p, p)+D_{s}(q, 2)$
(1v) Euclidean distence

$$
\operatorname{Dis}_{p}(p, q)=\sqrt{(x-s)^{2}+(y-t)^{2}}
$$

Eg:- For $V=\{0,1\}$ find the leger o shoitst $4,8 \times$ m-paths b / n poq. Repent for $U=\{1,2\}$ for the given inage.

$$
\begin{array}{llllll}
3 & 1 & 2 & 1 & (q) \\
2 & 2 & 0 & 2 & \\
1 & 2 & 1 & 1 & \\
(p) & 1 & 0 & 1 & 2
\end{array}
$$

Siv
4-pak:-
 reach q as no pain exist b/n q $\&$ prev. pixel.

(P)
spath is not
arigue
$312,16)$
2202

$1 \rightarrow 0 \rightarrow 12$
(p) m-path $\begin{aligned} & \left(\text { min } 0, f_{0}\right) \\ & =5\end{aligned}$

II
fir $v=\{1,2\}$
Lepath

(P)

4 path (not unighe)
\min lengte $=6$

8 poth $\min \log G=4$

HW. $F G, V=\{2,3,4\}$ Compnte the legtes of shortist 6,8, tapoty b/o pay for the following inge.
(3) In inage of size 630×480 hes 24 bit cols. Calcelote the memsy sequiled by the ingeg.

$$
\begin{aligned}
S & =M \times N \times k . \\
& =630 \times 480 \times 24=7.2576 \text { Mbit. }
\end{aligned}
$$

 $\times 1024$ \& no. \& gey levels aes 128. $128=2^{k} \Rightarrow 7 k=7$.

$$
L=2^{k}
$$

$$
b=1024 \times 1024 \times 7=754
$$

$M \times N \rightarrow$ sici of ariay (pinels)
(image)
$L \rightarrow$ disaite intensity livels
Due to strage squantzing h/w considecations, no of intensity levils $L \rightarrow$ Intaie pouse of 2 .

$$
L=2^{k} \quad k \rightarrow \text { bt inge } \quad \text { if } k=8 \text { then } L=2^{8}=256
$$

$b \rightarrow$ no. \& bite iequied do sine a digitied inage.

$$
b=M \times N \times K
$$

when $M=N$ then $b=N^{2} t$.

E5:- 512×512 inge nth 256 glaglevels at 300 bandrate. How many mins wenld it toke to kannt?
(baudrate \rightarrow no. ${ }^{\text {B }}$ bt transmitted $/$ sec.

$$
\begin{aligned}
& \text { Assums each byle is one paocet win stut } L=2^{8} \\
& b=m \times n \times k \text {. bit a'stop bit) } \quad k=8 \text {. } \\
& \operatorname{Time}=\frac{m \times N \times k}{\text { bandrete }} \text { secs. } \\
& =\frac{512 \times 512 \times 8}{300}=\text { secs }
\end{aligned}
$$

\Rightarrow Image Sampling \& Quantization

* Continuous image $f(x, y)$ is converted to digital form
* Image may be continuous wist x \&y coordinates \& also in amplitude
* Digitizing the co-ordinate values is called sampling \& digitizing the amplitude values is called quarilzaton

Scan line from A to B

Sampling \& suantiation

$$
A \ldots \quad, B .
$$

Digital scan line

* In order to coovert to digital function, the gray level values also must be corrected (quantized) into discrete quantities
* Starting at the top of the image of carrying out this procedure line by line produces a 20 oligital image

Continuous image projected onto a sensor array

Result of image
sampling \&
quantization

Histogram equalization
(1) 3-bit mage $(L=.8)$: of size 64×64 pixels ($M N=4096$) has intensity distribution shown below in table 3.1, where intensity leirels are integers in the range. $[0, L-1]=[0 ; 7]$

	r_{K}	n_{K}	$\operatorname{pr}\left(r_{K}\right)=n K / m N$
$r_{0}=0$	790	$0.19=790 / 4096$	
$r_{1}=1$	1023	0.25	
$r_{2}=2$	850	0.21	
$r_{3}=3$	656	0.16	
$r_{4}=4$	329	0.08	$L=8$
$r_{5}=5$	245	0.06	$M N=4096$
$r_{6}=6$	122	0.03	M
$r_{7}=7$	81	0.02	

$$
\begin{aligned}
& S_{k}=T\left(r_{k}\right)=(L-1) \sum_{j=0}^{k} P_{r}\left(r_{j}\right) \\
& S_{0}=T\left(r_{0}\right)=7 \sum_{j=0}^{0} P_{r}\left(r_{j}\right)=7 \operatorname{Pr}\left(r_{0}\right)=7 \times 0.19 \\
&=1.33 / 1 \\
& S_{1}=T\left(r_{1}\right)=7 \sum_{j=0}^{1} \operatorname{Pr}\left(r_{j}\right)=7 P_{r}\left(r_{0}\right)+7 p_{r}\left(r_{1}\right) \\
&=7 \times 0.19+7 \times 0.25=3.08
\end{aligned}
$$

Like this solving
we get we get

$$
\begin{aligned}
& \text { we get } \quad S_{3}=5.67,54=6.23, S_{5}=6.65, \\
& S_{2}=4.55, \quad S_{6}=6.86 \quad \text { \& } S_{7}=7.00 \\
& S_{5}=6.65=6.23 \rightarrow 6 \\
& S_{0}=1.33 \rightarrow 1 \quad S_{4}=6 . S_{5}=6.65 \rightarrow 7 \\
& S_{1}=3.08 \rightarrow 3 \quad S_{6}=6.86 \rightarrow 7 \\
& S_{2}=4.55 \rightarrow 5 \quad S_{7}=7.00 \rightarrow 7 \\
& S_{3}=5.67 \rightarrow 6 \quad
\end{aligned}
$$

$r_{\theta=0} \operatorname{mag}^{2} \sin _{0}=$
$r_{0}=0$ is mapped to $s_{0}=1 \quad \therefore 790$ pinely inhistoaray

$$
\begin{aligned}
& r_{1}=1 \quad \cdots \quad s_{1}=3 \quad \therefore 1023 \\
& \text { equalisedimar } \\
& r_{e}=2 \\
& \cdots \quad S_{2}=5 \\
& \therefore \quad 850 \\
& r_{3}+r_{4} \cdots 906 \therefore(656+329)=985 \\
& \text { ris } r_{5, ~}^{\$_{6}, r_{7} \ldots \quad \text { to } 7 \quad \therefore \quad(245+122+81)=448}
\end{aligned}
$$

$$
\begin{array}{ll}
S_{k} & i_{k} \\
1 & -790 \longrightarrow \\
3 & P_{S}\left(S_{k}\right) \\
5 & -1020 \longrightarrow \\
5-850 / 4096=0.19 \\
6-985 & =0.25 \\
7 & \longrightarrow 448 \longrightarrow 0.21 \\
& =0.24 \\
& 0.109
\end{array}
$$

Histogram matching (specification)

* Histogram equalization automatically determines a transformation function which produce an output image that has a uniform histogram.
* when automatic enhancement is desired, this is a good approach "O the results' from this technique are predictable to implement. \& the method is simple to imp
* for some application, this might is be the best approach eg base en hancement
* for some times, we need to specify the Shape of the histogram that we want to process the image
* The method used to genelate a processed image that has a specified histogram is called histog ram matching or histogram specification
* Histogram specification is a point operation that maps input image $f(x, y)$ into an output image $g(x, y)$ with a user specified histogram
* uses. * It improves contrast \& brightness of Images.
* It is a pre-processing step in comparison of images.

Let us recall histogram equalization Algonthmof
$P_{r}(r) \rightarrow$ pdf of greylevel r ' of input image
$P_{z}(z) \rightarrow$ pdf of greylerel ' z ' of specified image
$P_{S}(s) \rightarrow p d f$ of grey levels is of output image

The Transformation is

* Histogram equalization of input image

$$
\begin{equation*}
S=T(r)=\left[E^{2-1]}\right]^{r-1)} \operatorname{Pr}(r) d r \tag{1}
\end{equation*}
$$

* Histogram equalization of specified image

$$
\begin{equation*}
G(z)=z-1 /]_{(L-1)}^{z} P_{z}(z) d z \tag{2}
\end{equation*}
$$

Then

$$
\begin{align*}
& G(z)=S=T(\gamma) \\
& \Rightarrow z=G^{-1}[S]=G^{-1}[T(\gamma)]
\end{align*}
$$

+ Assuming that G^{-1} exists, then we can map ils grey levels ' γ ' to old grey levels's'.
procedure for histogram specification
Step 1:- obtain the transformation $T(r)$ by doing histogram equalization of ip image

$$
S=T(r)=\sum_{1}^{(-1)} \int_{0}^{r} P_{r}(r) d r
$$

Step 2: Obtain the Transformation $G_{n}(z)$ by doing $=$ histogram equalization of specified mage

$$
G(z)=\left(\Omega-1 \int_{0}^{z} P_{z}(z) d z\right.
$$

Step ii. Equate $G(z)=S=T(r)$
Step 4: Obtain inverse transformation function

$$
\begin{aligned}
& G^{-1} \\
& Z=G^{-1}[s]=G^{-1}[T(\gamma)]
\end{aligned}
$$

Step 5:- Obtains the output image by applying inverse transformation function to all pixels of input image.
(1) Assume an made having green grey level $\operatorname{pdf} \operatorname{Pr}(r)$. Apply his tog ram specification with given desired pol function $p_{z}(z)$

$$
\begin{aligned}
& \text { given below } \\
& P_{Y}(r)=\left\{\begin{array}{cl}
\frac{-2 r+1}{(L-1)} ; & 0 \leq r \leq L^{-1} \\
0 ; & \text { other wise }
\end{array}\right.
\end{aligned}
$$

Apply histogram specification with $L \rightarrow z$ the desired pelf function $p z(z)$ given in fig (b)

1) Obtain transformation function $T(Y)$ by doing histogram equalization of Input image

$$
\begin{aligned}
& S=T(r)=\int_{0}^{r} P r(r) d r=\int_{0}^{r}(-2 r+2) d r \\
& =\left[-r^{2}+2 r\right]_{0}^{r} \\
& =-r^{2}+2 r \text {. }
\end{aligned}
$$

2) Obtain transformation function $G(z)$

$$
\left.\begin{array}{rl}
G(z)= & \int_{0}^{z} P_{z}(z) d z
\end{array}\right)=\int_{0}^{z} 2 z d z
$$

(3)

$$
\text { Equate } \begin{aligned}
S & =T(r) \\
& =G(z) \\
-r^{2}+2 r & =z^{2}
\end{aligned}
$$

(4) Obtain inverse transformation G^{-1}

$$
\begin{aligned}
& z=G^{+1}[T(r)] \\
& z=\sqrt{-r^{2}+2 r}
\end{aligned}
$$

Discrete formulation
Histogram equalization of ils image

$$
\begin{aligned}
& S_{K}=T\left(r_{k}\right)=\sum_{j=0}^{k} P_{r}\left(r_{j}\right), K=0, \ldots L-1 \\
& S_{k}=(L-1) \sum_{j=0}^{K} \frac{n_{j}}{n} \quad k=\frac{(L-1)}{n=m N} \sum_{j=0}^{k} n_{j}
\end{aligned}
$$

$n=$ total no of pixels in ils Image $n_{j}=$ no of pixels having level

* Hansformation fun G(z) can der obtained wing eq (2) giten $P_{z}(z)$
(2)

$$
\begin{aligned}
& P_{\gamma}(r)= \begin{cases}\frac{2 r}{(L-1)^{2} ;} ; & 0 \leqslant r \leqslant L-1 \\
0 ; & \text { othel values of } r\end{cases} \\
& P_{z}(z)= \begin{cases}\frac{3 z^{2}}{(L-1)^{3} ;}, & 0 \leqslant z \leqslant(L-1) \\
0 ; & \text { other values of } z\end{cases}
\end{aligned}
$$

Find the Transformation funt
(i)

$$
\begin{aligned}
S=T(\gamma) & =(L-1) \int_{0}^{\gamma} p_{\gamma}(\omega) d \omega=(L-1) \int_{0}^{\gamma} \frac{2 \omega}{(L-1)^{2}} d \omega \\
& =\frac{2}{(L-1)} \int_{0}^{\gamma} \omega d \omega=\frac{\gamma^{2}}{(L-1)}
\end{aligned}
$$

(2) $G(z)=(L-1) \int_{0}^{z} P_{2}(b) d \omega=\frac{3}{(L-1)^{2}} \int_{0}^{2} \omega^{2} d \omega$

$$
=\frac{z^{3}}{(L-1)^{2}}
$$

(3)

$$
\begin{aligned}
& G(z)=S \\
& \frac{z^{3}}{(L-1)^{2}}=S \\
& \therefore \quad z=\left[(L-1)^{2} S\right]^{1 / 3}
\end{aligned}
$$

If we multiply every histogram equalized pixel by $(L-1)^{2}$ \& raise the product to the power by $1 / 3$, the result will de an image whose intensities z hare the PDF $P_{2}(z)=\frac{3 z^{2}}{(L-1)^{2}}$ in $(0, L-1)$

* $\sin 6 \quad s=\frac{r^{2}}{(1-1)}$

$$
\begin{aligned}
& z=\left[(L-1)^{2} \cdot \frac{\gamma^{2}}{(L-1)}\right] \\
& z=\left[(L-1) r^{2}\right]^{1 / 3}
\end{aligned}
$$

* squaring the value of each pixel in the original image \& mutliplying the result by (L-1) \& raising the product to the power $(1 / 3)$ will yield an image whose intensity levels z have the specified PDF.

Histogram equalization of specified image

$$
V q=G\left(z_{q}\right)=(1-1) \sum_{i=0}^{q} p_{z}\left(z_{i}\right), q=0, \cdots L-1 \text {; }
$$

equate

$$
G\left(z_{q}\right)=S_{k}=T\left(\gamma_{k}\right)
$$

inverse Transformation

$$
z_{q}=G^{-1}\left[S_{K}\right]=G^{-1}\left[T\left(r_{K}\right)\right]
$$ this $\begin{aligned} & \text { thoretion gites a value of } z \text { for each value of } s \text { (mapping } \\ & \text { to } s \text { to } z \text {] }\end{aligned}$ procedure for Histogram specification s to z)

Step 1: Equalize input image histogram [SK]
2:. Equalize specified image histogram $\left[\mathrm{V}_{q}\right]$
3: For $\min q\left[V_{q}-S\right] \geqslant 0$ find corresponding $v^{*} 4 p$.
4:- Map input pixels to old pixels to get output Image.
(1) Apply histogram specification on image in fig below

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
2 & 3 & 3 & 2 \\
0 & 1 & 0 & 1 \\
1 & 3 & 2 & 0
\end{array}\right]
$$

having $r_{i}=z_{i}=0,1,2,3$

$$
\begin{aligned}
& r_{i}=z_{i}=0,1,2,3 \\
& p_{r}\left(r_{i}\right)=0.25 \text { for } I=0,1,2,3 \\
& p_{z}\left(z_{0}\right)=0, p_{z}\left(z_{1}\right)=0.5 \\
& p_{z}\left(z_{2}\right)=0.5 \quad p_{z}\left(z_{3}\right)=0
\end{aligned}
$$

1: Equalize input image histogram.

2:. Equalize specified image histogram.

$$
S_{k}=T\left(r_{k}\right)
$$

$$
=\sum_{j=0}^{1 n_{j}} \frac{n^{\prime}}{n}
$$

z_{q}	0	1	2	3
$\operatorname{giv}_{i_{u}}$				
$p_{2}\left(z_{0}\right)$				
$p_{2}(z j)$				
$p_{z}\left(z_{q}\right)$	0	0.5	0.5	0
v_{q}	0	0.5	1	1

3:- Find minimum value of ' q ' such that

$$
\begin{aligned}
& \text { Find minimum value of } \\
& (\mathrm{Vq}-\mathrm{s}) \geqslant 0 \text {. first } 3 \text { columns are } \\
& \text { next } 3 \text { columns are }
\end{aligned}
$$

filled by step 1, next 3 columns are filled by step 2. In this step, last 2 column's are filled by $\frac{6011}{2}$ procedure

r_{k}	$P_{r}\left(r_{k}\right)$	S_{k}	z_{q}	$p_{2}\left(z_{q}\right)$	V_{q}	v^{*}	p
0	0.25	0.25	0	0	0	0.5	1
1	0.25	0.5	1	0.5	0.5	0.5	1
2	0.25	0.75	2	0.5	1	1	2
3	0.25	1	3	0	1	1	2

(a) $q=0, k=0 \quad v_{q}-s_{k} .(0-0.25) \quad v_{0}^{*}=v_{q} \quad P_{0}=z_{q}$

$$
\begin{aligned}
& q=0, k=0 \quad\left(V_{0}-S_{0}\right)=(0-0.25)=-0.25 \geq 0 \Rightarrow N 0 \\
& \text { increase } q \\
& q=1, k=0 \quad\left(V_{1}-S_{0}\right)=(0.5-0.25)=0.25 \geq 0 \Rightarrow \text { yes } \\
& \therefore V_{0}^{*}=V_{q}=V_{1}=0.5 \\
& P_{0}=z_{q}=z_{1}=1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& q=1, k=1 \quad\left(V_{1}-s_{1}\right)=(0.5-0.5)=0 \geqslant 0 \text { नHes } \\
& 0 V_{1}^{*}=V_{1}=0.5 \\
& 00 \quad P_{0}=Z_{1}=1
\end{aligned}
$$

(c)

$$
\begin{array}{r}
q=1, k=2\left(v_{1}-s_{2}\right)=(0.75) \geqslant-0.75 \geqslant 0 \Rightarrow \text { No } \\
\begin{aligned}
\text { incwase }
\end{aligned} \\
q=2, k=2\left(v_{2}-s_{2}\right)=(1-0.75) \geqslant 0 \Rightarrow \text { yes } \\
=0.25 \\
\therefore v_{2}^{*}=V_{2}=1 \\
\therefore P_{2}=z_{2}=2
\end{array} ~ l i
$$

incuase q
(d) $q=2, k=3$

$$
\begin{aligned}
&\left(V_{2}-s_{3}\right)=(1-0.75)=0.4 \geq 0 \text { yes } \Rightarrow 1 \\
& V_{3}^{*}=V_{2}=1 \\
& P_{3}=Z_{2}=2
\end{aligned}
$$

map ilplerels to o/p lerels value
4

$r k$	0	1	2	3
p	1	1	2	2

5 Map ilp pinels to new values to get he wimeng

$$
\left.\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
2 & 3 & 3 & 2 \\
0 & 1 & 0 & 1 \\
1 & 3 & 2 & 0
\end{array}\right] \Rightarrow \begin{array}{llll}
f(x, y)
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
2 & 2 & 2 & 2 \\
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 \\
g(x, y)
\end{array}\right]
$$

* Let $p r(r) \rightarrow p d f$ of grey level ' r ' of il Image
$p_{ \pm}(z) \rightarrow p d f$ of grey level ' z ' of specified Inure
$r \& z \Rightarrow$ intensity levels of ils \& op images resp.
* Transformation of particular importance in image proussing is given by

$$
\begin{equation*}
S=T(\gamma)=(L-1) \int_{0}^{\gamma} \operatorname{Pr}(\omega) d \omega \tag{1}
\end{equation*}
$$

(continuous version of histogram equalizn)

* Let us define a random Variable 'z' with the property

$$
\begin{align*}
& G(z)=(L-1) \int_{z}^{z} P_{z}(t) d t=5 \text { - came as } \tag{2}\\
& \qquad \rightarrow \text { dummy valiance }
\end{align*}
$$

$$
t \rightarrow \text { dummy valiable }
$$

* from eq (1) 4 (2)

$$
G(z)=T(r)
$$

$0_{0} 0$ ' I ' must satisfy the condition

$$
\begin{equation*}
z=G^{-1}[T(r)]=G^{-1}(S) \tag{3}
\end{equation*}
$$

* Once $\operatorname{Pr}(r)$ has been estimated from ip image, then $T(r)$ can be obtained by eq (1)

Consider 64×64 hypothetical image shown in previous example whore histogramis shown in delowfige It is desired to transform this histogram so that it will have the values specified in the second column of. table 3.2 \& fig(6) shows a sketch of this histogram.

$\frac{r_{k}}{r_{0}=0}$	$\frac{n k}{}$		$p r(r k)$
$r_{1}=1$	1023	0.19	
$r_{2}=2$	850	0.25	
$r_{3}=3$	656	0.16	
$r_{4}=4$	329	0.08	
$r_{5}=5$	245	0.06	
$r_{6}=6$	122	0.03	
$r_{7}=7$	81	0.02	

 $r_{7}=7 \quad 81 \quad 0.02$

I to obtain histogram-equalized value

$$
\begin{array}{llll}
s_{0}=1 & s_{2}=5 & s_{4}=6 & s_{6}=7 \\
s_{1}=3 & s_{3}=6 & s_{5}=7 & s_{3}=7
\end{array}
$$

II compute all the values of the transformatia

$$
\begin{aligned}
& \text { Gun } G \text { using } \\
& G\left(z_{q}\right)=(L-1) \sum_{i=0}^{q} P_{z}\left(z_{i}\right) \\
& G\left(z_{0}\right)=7 \sum_{j=0}^{0} P_{z}\left(z_{i}\right)= \\
&=7 \times P_{z}\left(z_{0}\right)=0.000 \\
& G\left(z_{1}\right)=7 \sum_{i=0}^{1} P_{z}\left(z_{j}\right)=7\left[P\left(z_{0}\right)\right. \\
&\left.+P\left(z_{1}\right)\right]=0.00
\end{aligned}
$$

114

$$
\begin{array}{ll}
G\left(z_{2}\right)=0.00 & G\left(z_{3}\right)=1.05 \\
G\left(z_{4}\right)=2.45 & G\left(z_{5}\right)=4.55 \\
G\left(z_{6}\right)=5.95 & G\left(z_{7}\right)=7.00
\end{array}
$$

* these fractional values are conseeted into integer

$$
\begin{aligned}
& G\left(z_{0}\right)=0.00 \rightarrow 0 \quad G(2 \\
& G\left(z_{1}\right)=0.00 \rightarrow 0 \quad G(z) \\
& G\left(z_{2}\right)=0.00 \rightarrow 0 \quad G(z \rightarrow 1 \\
& G\left(z_{3}\right)=1.05 \rightarrow 2 \\
&
\end{aligned}
$$

$$
G\left(z_{4}\right)=2.45 \rightarrow 2
$$

$$
G(25)=4.55 \rightarrow 5
$$

$$
G(z 6)=5.95 \rightarrow 6
$$

z_{q}	$G\left(z_{q}\right)$
$z_{0}=0$	0
$z_{1}=1$	0
$z_{2}=2$	0
$z_{3}=3$	1
$z_{4}=4$	2
$z_{5}=5$	5
$z_{6}=6$	6
$z_{9} 7$	7

III We find smallest value of z_{q} so that the value $G\left(z_{q}\right)$ is closest to S_{k}.
eg() $S_{0}=1$ \& we see $G\left(Z_{3}\right)=1$
which is perfect match in thiscale \therefore we have correspondence $50 \rightarrow \mathrm{Z}_{3}$
1.e. evely pixel whose value is 1 in the histogram equalized image would map to a pixel valued 3 (in the corresponding location) in the histogram-srecitied ware

s_{k}	$\rightarrow 2 q$
1	\rightarrow
3	$\rightarrow 4$
5	$\rightarrow 5$
6	$\rightarrow 6$
7	$\rightarrow \gamma$

$$
\begin{aligned}
& S_{1}=3 \quad G\left(z_{4}\right)=2 \\
& \therefore S_{1} \rightarrow z_{4}
\end{aligned}
$$

* To compute $p z\left(z_{q}\right)$
$S=1$ maps to $z=3$
there ale 790 pixels in the histogram, - equalize image with a value of 1 .

$$
\begin{aligned}
& 00 \mathrm{Pz}\left(z_{3}\right)=\frac{790}{4096}=0.19 \\
& S=3 \rightarrow z=4 \\
& \therefore P_{2}\left(z_{4}\right)=\frac{1020}{4096} \\
& =0.25 \\
& S=6 \rightarrow z=6 \\
& P_{2}\left(z_{6}\right)=\frac{985}{4096} \\
& =0.24 \\
& S=5 \rightarrow z=5 \\
& P_{2}(25)=\frac{850}{4096} \\
& =0.21 \\
& s=7 \rightarrow z=2 \\
& P_{2}\left(z_{7}\right)=\frac{448}{4096} \\
& 20.109 \\
& 20.11 \\
& Z_{q}
\end{aligned}
$$

Local histogram processing

* The histogram process discussed before [histogram equilization 4 histograms specialization] ale global
* in this approach, pixels are modified by a transformation function based on the intensity distribution of an entire image.
Although
* .This method is suitable for overall enhancement, these are some cases in which it is necessary to enhance details over small areas in an Image
* The no of pixels in these areas may have negligible influence on the computation of a global transformation whose shape doesnot necessalily guarantee the desired local enhancement
$*$ The solution is +0 devise transformation, functions based on the intensity distribution in a neighborhood of every pixel in the image
* The procedure is to define a neighborhood and move its center from pixel to pixel
* At each location, the histogram equalization or histogram specification transformation function is obtained.
* This fun is then used to map the intensity of the pixel centered in the neighborhood
* The centre of the neighborhood region is then moved to an adjacent pixel location \& the procedure is repeated * © only one row or column of the neighborhood changes duling a pinel-to-pinel translation of the neighborhood, updating the histogram obtained in previous location with the new data introduced at each motion step is possible
* this approach has

Advantages Over repuade repeated by xomputing the histogram of all pixels in the neighborhood legion each time the region is moved one pixel location

* one more approach used sometimes to reduce computation is to utilize non-overlapping regions but this method usually produces an undesirable "blocky" effect

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3.

Using Histogram statistics for image
En hancement 1 .

* Statistics obtained directly from an Image histogram can be used for in age enhancemers.
* Let ' r ' denote \Rightarrow discrete random valiable representing intensity values in the range $[0, L-1]$
$P\left(r_{i}\right) \Rightarrow$ the normalized histogram component corresponding to value r_{i}
conan estimate of Probability that intensity r_{i} occurs in the image from which the histogram was obtained
* $n^{\text {th }}$ moment of ' r ' about its mean is defined as

$$
\begin{equation*}
\mu_{n}(r)=\sum_{i=0}^{L-1}\left(r_{i}-m\right)^{n} p\left(r_{i}\right) \tag{1}
\end{equation*}
$$

Where
$m=$ mean value (average intensity of pixels in

$$
\begin{equation*}
m=\sum_{i=0}^{L-1} r_{i} p\left(r_{i}\right) \tag{2}
\end{equation*}
$$ the (mage)

* The second moment is particularly important ${ }_{L-1}^{4}$ is defined as

$$
\mu_{2}(r): \sum_{i=0}^{k=1}\left(r_{i}-m\right)^{2} p\left(r_{i}\right) \rightarrow 3
$$

eq (3) is recognized as intensity valiance denoted by σ^{2}
mean \rightarrow measure of average intensity in an Image
valiance \Rightarrow measure of constrast Gored deviation
steel. der: squatryout in an image. eq valiant

* Once the histogram is computed for an image, all the moments are easily computed using eq (1)
* When mean $\&$ variance ale computed directly from the sample values, without computing the histogram [common pratic] then these estimates are called as Sample mean 4 Sample valiance

$$
\begin{align*}
m & =\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{4=0}^{N-1} f(x, y) \rightarrow(4) \\
\sigma^{2} & =\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}[f(x, y)-m]^{2}-
\end{align*}
$$

* sometimes instead of $M \mathrm{~N}$. even MN-1 can be used the is done to (unbiased estimate of variance Variance
of consider 2-6it image size 5×5

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 2 \\
1 & 2 & 3 & 0 & 1 \\
3 & 3 & 2 & 2 & 0 \\
2 & 3 & 1 & 0 & 0 \\
1 & 1 & 3 & 2 & 2
\end{array}\right]
$$

the pixels are rep resented by 2 -bits

* pixels are represented by 2 bits

$$
0 \quad L=
$$

* The intensity levels are in the rang $[0, \ldots]$

* $M N=$
* histogram has the components $P\left(r_{i}\right) \Rightarrow$ compute
* Compute average value of intensities in the image
* samplervalue *?
* Uses of mean \& variance for enhancement purpose
* The global mean $\&$ variance are computed \& ale useful for grots adjustments in overall intensity \& contrast.
* We of these parameters in local enhancement
* Local mean 4 Valiance are used as basis for making changes that depend on image charactestics in a neighbourhood about each pixel in an image
$* \operatorname{Let}(x, y) \Rightarrow$ co-ordinary of any pixel in a given Image
$S_{x, y} \Rightarrow$ neighborhood (Subimage) of specified size, centered on $(x, 4)$.
* mean value of the pixels in this neighborhood is

$$
m_{S_{x y}}=\sum_{i=0}^{l-1} r_{i} P_{s_{x y}}\left(r_{i}\right)
$$

$P_{\rho x y} \Rightarrow$ his togram of pixels in region Sty.

* variance of pixels in the neighborhood

$$
\begin{equation*}
\sigma^{2} s_{x_{y}}=\sum_{i=0}^{L-1}\left(r_{i}-m_{\rho_{x_{y}}}\right)^{2} \rho \rho_{x_{y}}\left(r_{i}\right) \tag{48}
\end{equation*}
$$

* Local mean \Rightarrow is a measure of avg intensity in neighbor hood soy
* Local valiance \Rightarrow is a measure of intensity constrast in the neighborhood
Arithmetic | Logic operations
 Multi image operation
* In multi image operation, grey levels of 20 r more input images are mapped to a single op image as shown in above fig
* $g(x, 4)=O P\left[f_{1}(x, y), f_{2}(x, y)\right]$
$f_{1}+f_{2} \rightarrow$ ip images $g \longrightarrow \delta / \rho$,
$o p \rightarrow$ operator which is applied pair wise to each pixel in the mare
+ operations are addition, multiplication, subtraction [Arithmetic C]
and Logical [AND, OR XOR. Lt?]
(1) Image subtraction

Appins: Image subtraction has numerous applications in image enchanceme: -nt 4 segmentation namely

* Motion detection
* Back ground illumination
* Calculating error (mean square error) bet' ils \& reconstructed inaqu
* fundamentals au lased on subtraction of 2 images defined on the difference bet every pair of corresponding pixels in the 2 images

$$
\begin{equation*}
g(x, y)=f(x, 4)-h(x, y) \tag{1}
\end{equation*}
$$

FIGURE 3.43: Motion detection: fig (a) and (b) are subtracted to get difference imoge $l d$ f. fy
(c) is thresholded to generate binary image (d).
sometimes we can find absolute difference

$$
\begin{equation*}
g(x, y)=|f(x, y)-h(x, y)| \rightarrow \tag{2}
\end{equation*}
$$

Apply!. Interesting app in is in medicine where $h(x, y) \Rightarrow$ mas k which is subtracted from series images to get vely interesting results
(1) Digital subtraction Angiography
$h(x, y) \Rightarrow x$-ray of patients body, $f(x, y) \Rightarrow$ another x-ray which is obtained by injecting radio opaque dye which spreads into his blood steam

$$
g(x, y)=f(x, y)-h(x, y) \Rightarrow \begin{aligned}
& \text { contains } \\
& \text { only bloodnesk }
\end{aligned}
$$

used to extract patients blood carrying vessel
(2) motion detection
(3) Vide compression - to encode only the differences bet' frames.
(4) Automatic checking of industrial parts
(2) Image Addition

* to create a double exposure or composites

$$
\text { * } g(x, y)=f_{1}(x, y)+f_{2}(x, y)
$$

* A weighted blend can also be done

$$
g(x, 4)=\lambda_{1} f_{1}(x, 4)+\lambda_{2} f_{2}(x, 4)
$$

* Image averaging $/$. to average multiple images of the same scene to seduce
noise's of single image of electron microscope can be very noisy. one way to seduce such kind of noise is to acquire multiple images of the same sene for long duration \& then perform image averaging

$$
\bar{g}(x, 4)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x, 4)
$$

arg Image $4 f_{1} \ldots f_{n}$ ale n a cquiled images

$$
f(x, y)=\underset{\substack{\text { in } \\ \text { noiseless } \\ \text { image }}}{\operatorname{f}_{\text {noise }}}
$$

if n is \hbar igh. The arg image in closer to noiseless image if no of lmanc in high.

FIGURE 3.45: (a) Image addition

FIGURE 3.45: (b) Image averaging

The term watershed

 refers to a ridge that ...$$
\begin{aligned}
& \text {... divides areas } \\
& \text { drained by different } \\
& \text { river systems. }
\end{aligned}
$$

FGURE 3.46: (a) Input image 1

The term watershed refers to a ridge that ...

RGURE 3.46: (c) Output of image addition

FIGURE 3.46: (b) Input image 2
The term watershed refers to a ridge that ...

$$
\begin{aligned}
& \text {... divides areas } \\
& \text { drained by different } \\
& \text { river systems. }
\end{aligned}
$$

FIGURE 3.46: (d) Output of ex 3.10

Boolean operations

* If binary images need to be combined/operated, We can use boolean operation.
* Adv/ - can be carried out relatively bast on computer
* Boolean operations are used for masking * mask can be Arsed / Ored with ils image to extract legion of interest
* Logical operations are also used in In age quantization when 8 bit inform has to be reduced to 5/4 bit

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 3.47: Boolean operations

Note

Bit wise AND operation is also used in matlab ex 3.6 to extract various bit planes from the image.

FIGURE 3.48: (a) Input image

Fundamentals of spatial filtering

* spatial filtering is one of the principal tool used in DIP for a broad spectrum of applications eq. noise removal, bridging the gaps in object boundaries, Sharping of edges etc.
* filtering refers to passing (accepting) or rejecting certain frequency component
* spatial filtuling involves passing a weighted mask, or kernel over the image and replacing the original image pixel value corresponding to the centre of the kernel with the sum of the original pine values in the region comaspondinay to the kernel multiplied by the kernel weights
mechanics of spatial filteling
* Spatial filter consists of
(i) a neighborhood (typically a small rectangle
2 (ii) a predefined operation that is performed on the image pines encompassed by the neighborhood
* filtering creates a new pixel with coordinates equal to the coordinates of the enter of the neighborhood \& whok values is the result of the filtering operation
* A processed (filtered) image is generate as the center of the filter visists each pixel in the ils Image
* If the operation performed on the Image pixels is linear, then the filter is called linear spatial filter. other wite the filter is non-linear
Linear spatial filteling
mare origin
image pixel

$y-1$	y	$y+1$	filter co
$\qquad$$x-1$ $f(x-1, y-1)$ $f(x-1, y)$ $f(x-1, y+1)$ x $f(x, y-1)$ $f(x, y)$ $f(x, y+1)$ $x+1$ $f(x+1, y+1)$ $f(x+1, y)$ $f(x+1, y+1)$			

pixels of 1 mage section under filter

* dig illustrates the mechanics of limear spatial filtuling using 3×3 neighborhood.
* At any point (x, y) in the image, the response $g(x, y)$ of the filter is the sum of products of the filter cuefficiens \& the image pinels encompassed by the filter

$$
\begin{aligned}
& \text { piter } \\
& g(x, y)= \omega(-1,-1) f[(x-1), y-1]+ \\
& \omega(-1,0) f(x-1, y)+ \\
& \cdots+\omega(0,0) f(x, y)+ \\
& \cdots+\omega(1,1) f(x+1, y+1)
\end{aligned}
$$

* center coefficient of the filter $\omega(0,0)$ aligns with the pixel at 10 cation $(x, 4)$
* for a mask of size $m \times n$, we assume that $m=2 a+1$ \& $n=2 b+1$, where $a+b$ the integen
* our focus is on filtes of oddsize $3 \times 3 \Rightarrow$ smallest ibing of
* limar \$patial filter of image sixe $M \times N$ with a filter of size $m \times n$

$$
g(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)
$$

Apply given 3×3 mask "w" of fig (a) on the given image $f(x ; y)$ defined as

5	1	2	6	7
4	4	7	5	8
2	6	20	6	7
3	1	2	4	5
10	2	1	2	3

$$
\frac{1}{9} \times \longdiv { \begin{array} { l l l }
{ 1 } & { 1 } & { 1 } \\
{ 1 } & { 1 } & { 1 } \\
{ 1 } & { 1 } & { 1 }
\end{array}] }
$$

ω
i) P image 8 is $=5 \times 5$

5014

1. $\left.\begin{array}{|ccc|cc|}\hline 5 & 1 & 2 & 6 & 7 \\ 4 & 4 & 7 & 5 & 8 \\ 2 & 6 & 20 & 6 & 7 \\ 3 & 1 & 2 & 4 & 5 \\ 10 & 2 & 1 & 2 & 3\end{array}\right]$

$$
\begin{aligned}
& \text { OPp } \\
& = \\
& \frac{1}{9} \times\left[\begin{array}{l}
5 \times 1+1 \times 1+2 \times 1 \\
+4 \times 1+4 \times 1+7 \times 1 \\
\\
+2 \times 1+6 \times 1+20 \times 1
\end{array}\right] \\
& =\frac{49}{9} \cong 5
\end{aligned}
$$

Replace gley tenet value 4 dy 5

$$
\left\lvert\, \begin{array}{lllll}
* & * & * & * & * \\
* & 5 & 6 & 8 & x \\
* & 5 & 6 & 7 & x \\
* & 4 & 5 & 6 & * \\
* & * & * & * & * \\
\hline
\end{array}\right.
$$

(2)

$$
\begin{aligned}
\text { olp }= & \frac{1}{9}[|x|+2 \times 1+6 \times 1+4 \times 1+7 \times 1+ \\
& 5 \times 1+6 \times 1+20 \times 1+6 \times 1] \\
= & \frac{57}{9} \cong 6 \quad 7 \rightarrow 6
\end{aligned}
$$

(3)

$$
\begin{aligned}
\text { olp } & =\frac{1}{9}\left[\begin{array}{l}
2 \times 1+6 \times 1+7 \times 1+7 \times 1+5 \times 1 \\
+8 \times 1+20 \times 1+6 \times 1+7 \times 1
\end{array}\right] \\
& =\frac{68}{9}=8 \quad 5 \rightarrow 8
\end{aligned}
$$

(4) O/P: $\frac{1}{9}[4+4+7+2+6+20+3+1+2]=\frac{49}{9}=5$
5. $O / P=\frac{1}{9}[4+7+5+6+20+6+1+2+4]=\frac{55}{9}=6$
6. olp $=\frac{1}{9}[7+5+8+20+6+7+2+4+5]=\frac{64}{9}=7$
7. olp: $\frac{1}{9}[2+6+20+3+1+2+10+2+1]: \frac{38}{9}=4$
8. Olr: $\frac{1}{9}[6+20+6+1+2+4+2+++1]: \frac{44}{9}=5$
q. \quad || $P=\frac{1}{9}[20+6+7+2+4+5+1+1+3]: \frac{59}{9}=6$

Spatial correlation \& convolution
Note' Handling images Borders

(1) Ignoring edges. - Apply the mask to only those pixels in the mage for which the mask lies fully with the image

* mask is applied to all pixels in the image except for edges [olp image is smaller than that of ils inform]
(2) padding!.
* In this case, the ils image is padded with zeros at the border.
* This pres the size of ilp image before applying filter
(3) Mirroring!.
* mirror image of the known image is created with the border

$$
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 1 & 2 & 6 & 7 & 0 \\
0 & 4 & 4 & 7 & 5 & 8 & 0 \\
0 & 2 & 6 & 9 & 30 & 7 & 0 \\
0 & 3 & 2 & 1 & 4 & 5 & 0 \\
0 & 1 & 2 & 2 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lll}
d \\
\text { with the bor de } \\
5 & 5 & 1 \\
5 & 2 & 6 \\
5 & 1 & 2 \\
6 & 7 & 9 \\
4 & 4 & 4 \\
7 & 5 & 8 \\
2 & 2 & 6 \\
2 & 206 & 7 \\
3 & 3 & 1 \\
2 & 4 & 5 \\
1 & 1 & 2 \\
1 & 2 & 3 \\
1 & 2 & 1 \\
1 & 2 & 3
\end{array} \quad \text { column }
$$

Linear spatial filteling
(1) correlation
(2) Convolution
(1) Corelation! is the process of moving
a filter mask over the image f computing the sum of products at each location. [as explained in Linear spatial filteling]
(2) Convolution, the mechanism is same except the filter is first rotated by 180°

* Let us explain the above concept using $1-D$ illustration. correlation
(a) 50 origin fol $\quad W_{12328} \quad \begin{aligned} & \text { Length of } \\ & \text { image }=8\end{aligned}$ length of filter (six) $=m=5$
(b) 010010000 12328
starting position alignment
(c) $\sqrt{\text { r }} 000000100000000$
$(m-1)$ o's are padded on other 12328 either side of ' f '

(g) Full correlation result

$$
1 \text { correlation }
$$

(h) cropped correlation result (the size should be same as f)
8232100

$$
08232100
$$

convolution
(a) $00010000 \quad 82321$
(b) 8232100010000
(c) $\frac{0000000100000000 \text { zero padding }}{8321}$
(9) Full convolution result

$$
000123280000
$$

$($ (e) $01232800 \rightarrow$ cropped convolution

00000001000010000
$82(3) 21-$
82 (3) 21 -
82 (3) 21

82 (3) 21

* Two important points to note from the above discussion.
(1) 7 corelation is a function of displacement of the filter.
* If t value of correlation corresponds to zen displacement of the filter
* gino corresponds to one unit displacement \& so on.
(2) The correlating a filter " w' w' th a function that contains all o's \& 9 single 1' yields a result that is copy of ' w^{\prime} but roated by 180°
* correlation of a function with a discrete unit impulse yields a rotated version of the function at the location of the impulse
(3) convoluting a fun with a unit impulse yields a copy of the function at the location of the impulse
* correlation yields a copy of the function also but rooted by 180° oo 16 we pre-rotats the filter 4 perform the same sliding sum of products, we will obtain desired result
* for images, the same concepts can be applied
* for filter of size may, we pad the image with a minimum of $m-1$ rows of o's at the top \& bottom and $n-1$ columns of o's on the left 4 right
* Convolution is cornerstone of 9 linear system theory

FIGURE 3.30

Correlation
(middle row) and convolution (last row) of a $2-D$ filter with a 2-D discrete, unit impulse. The 01s are shown in gray to simplify visual analysis
b. filter $\rightarrow w(x, y)$ of size $m \times n$, image $\rightarrow f(x, 4)$

* Corelation of a filter \& Image

$$
w(x, y) * f(x, y)=\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)
$$

* Convolution

$$
\omega(x, y) * f(x, y)=\sum_{s_{i}-a}^{b} \sum_{t=-b}^{b} \omega(s, t) f(x-s, y-t)
$$

where $-\operatorname{sign} \Rightarrow$ right flip (rotas it by 180.)
vector Representation of Linear filtering
$R \Rightarrow$ characteristic response of a mask
of either correlation or convolution

$$
\begin{aligned}
R & =\omega_{1} z_{1}+\omega_{2} z_{2}+\cdots+\omega_{m n} z_{m n} \\
& =\sum_{k=1}^{m n} \omega_{k} z_{k}=\omega^{\top} z
\end{aligned}
$$

$\omega_{k} \rightarrow$ coefficients of an $m \times n$ filter
$I_{k} \rightarrow$ corresponding image intensities encompassed by filter

$$
\begin{aligned}
R & =w_{1} z_{1}+w_{2} z_{2}+\cdots+w_{q} z_{q} \\
& =\sum_{k=1}^{q} w_{k} z_{k}=w^{\top} z
\end{aligned}
$$

Generating spatial filter masks

* Generating an $m \times n$ linear spatial filter requires in specifying mn mask coefficients.
* Coefficients are selected based on the filter type.
* for example, we want to replace the pines in an image by the average intensity of a 3×3 neighborhood centered on those pixels.
* Then the average value at any location (x, y) in the image is the sum of the nine intensity values in the 3×3 nieghborhood centered on $(x, 4)$ divided by 9 .

$$
R=\frac{1}{9} \sum_{i=1}^{9} z_{i}
$$

* In some applications, we have continuous function of 2 variables \& the objective is to obtain a spatial filter mask based on that function.
ed a Gaussian fun of 2 variably has the basie form $-\frac{x^{2}+y^{2}}{2 \sigma z^{2}} \times\left[e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}\right.$
$h(x, y)=e^{-}$
where $\sigma=$ stael. deviation
$x, y=$ aulintegets
to generate 3×3 mask from this fun, we sample it about its center

Generating spatial filter counted

* Generating a non-linear filter requires
(i) specifying the size of a neighborhood

4 (i) operation (s) to be performed on the image pixels contained in the neighbor hood

* Nonlinear filter are quite powerfal 4 in jove applications they can perform functions that ale beyond the capabilities of linear filter
* eAt. 5×5 maximum filter [which performs max operation] (enteled at an arbitrary point (x, y) of an image obtains the maximum intensity value of the 25 pixels 4 assign that value to location $(x, 4)$ in the phoussed In are
smoothing spatial filters
* smoothing filters are used for blurring \& for noise reduction
* Blurring is used in preprowsing tasks, such as removal of small detail is from an image prior to charges object extraction \& bridging of small gaps in lines or curves.
* Noise seduction can be accemplished by blurring with a lineal filter 4 also non linear filter
smoothing Linear filters
* The output (response) of a smoothing linear Spatialfilter is simply the average of the pixels contained in the neighborhood of the filter mask.
* These filters are called as averaging filter or Low-passfilter of meanfilas
* In smoothing filters, the value of evely pixel in an image is replaced by the average of the intensity levels in the neighborhood defined toy the filter mask.
* This process results in an image with reduced sharp transitions in intensities.
* Random noise typically consists of shalp transitions in intensity levels. $\therefore 0$ most obvious application of smoothing is noise reduction.
* The edges (which almost always are desirable fearules of an image) are Characterized by shalp intensity transition.
* so averaging filters have undesirable side effect that they blur edges.
* Another application of this tyre of process includes the smoothing of false contour which results from using insufficient no of intensity level
* A major use of averaging filter is in the reduction of irrelevant detail in an Image.
[irrelevant \rightarrow pixel legions that ale small WRT to the size of the filter masc]
3×3 smoothing average filter

(b) Weighted average
(Hi) use of this filter (st one) yields the standard average of the pixels under the mas k

$$
R=\frac{1}{9} \sum_{i=1}^{q} z_{i}
$$

$$
R=\sum_{k_{z} 1}^{q} w_{k} z_{k}
$$

$\stackrel{y}{\Rightarrow} \quad \begin{aligned} & i=1\end{aligned}$ average of the intensity levels of the pixels in the 3×3 neighborhood defined by the mask

* The coefficients of the filter ale all is
* The sided here is that it is computationally more efficient to have coefficients valued 1.
* At the end of filteling process, the entice image is \div by 9 .
* An $m \times n$ mask would have a normalizing constant equal to $\frac{1}{m n}$.
* A spatial averaging fitter in which all coefficients are equal sometimes is called as box-filter
above
* The second tyre u shown innfig (b) is called as weighted average, in which the pixels are multiplied dry different coefficients of filter mask, the le dry giving more importance (weight) to some pixels at the expenses of other.
* in the filter mask shown afore
(i) the pixel at the

$\frac{1}{16} \times$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 | center of the mask is multiplied by a high value than any other thus giving this pixel more importance in the calculation of the average.

(i) The other pixels are inversely weighted as a function of their distance from the center of the mask
(iii) The diagonal telms ale further away from the center than the orthogonal neighbors (by a factor of $\sqrt{2}$)
\& ale weighted less than the inmerdiate neighbors of the centre pixel

* The basic strateqy behind weighing the center point the highest \& then redureng the value of the coefficients as a function of increasing distance foom the origin is to simply an attenept to reduद blurring in the smootheng pholey
* The qenelal implementation for filtering an MXN image with a ureighted areraging filter of size mxn (man are odd) is gilen dy

$$
g(x, y)=\frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t)}
$$

- The denominator is the sum of the mask caepficients \& oo it is a constant that needs to be computed only once
\&Apph of spatial arelaging is to blur an imacge for the purpose of getting a gross repsesentation of objects of intererx is, intensity of smaller objects blends with black ground \& larger objects become bloblike 4. eas 4 to detect

Figure 3.33
(a) Original image, of size 500×500 pixels. (b)-(f) Results of smoothing With square averaging filter masks of sizes $m=3,5,9,15$, and 35 , respectively. The black Squares at the top are of sizes $3,5,9,15,25,35,45$, and 55 pixels, respectively; their borders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in increments of 2 points; the letters at the bottom range in size . pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100% ack in increments of 20%. The background of the image is 10% black. The noisy
relangescrements of 20%. The background of the image is 10% black. The noisy "angles are of size 50×120 pixels.

abc
FIGURE 3.34 (a) Image of size 528×485 pixels from the Hubble Space Telescope. (b) Image filtered with a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

3.5.2 Order-Statistic (Nonlinear) Filters

order- statistic (Non-linear) filters

* order - statishc filter ale non linear spatial filters whose response is based on ordering (ranking) the pixels contained in the image area encompassed by the
- filter
* and replacing the value of the center pinel with the value determined by the ranking result
* The best -known filter in this category is median filter
* In median filter, the value of a pined is replaced by the median of the The intensity values in the neighborhood of that pixel.
* Median files are quite popular because - for random noise, they provide excelled noise-reduction capabilities with less blurring than linear smoothing filses
- are effective in the presence of imepulk noise, also called as salt and pepper noise [appearance as white zblack dot] superimposed on an image]
$\left.\begin{array}{l}\text { + The median } \xi \\ \text { of asset of } \\ \text { value }\end{array}\right\}=\frac{1}{2} \begin{aligned} & \text { values } \\ & \text { in the } \\ & \text { set }\end{aligned} \leqslant \xi$
* The median, ξ of a set of values is such that half the values in the set are less than or equal to \& $\&$ half are greater than or equalue to $\&$
* to perform median filtering at a point in an image
(i) we sort the values of the pined in the neighborhood
(ii) determine their median

2(iii) assign that value to the correspondent pixel in the filtered image
tee. in a 3×3 neighborhood, the median is $5^{\text {th }}$ largest value
in a 5×5 neighborhood, it is the $13^{\text {th }}$ largest value 4 so on

* Suppose a 3×3 neighborhood has values

$$
\begin{aligned}
& \text { Suppose a } 3 \times 3 \text { vern } 20,20,25,100) \text {. } \\
& (10,20,20,20,15,20,1.2 \text { carted as }
\end{aligned}
$$

values are sorted as

$$
\begin{aligned}
& \text { Values are } \\
& {[10,15,20,20,20,20,20,25,100)} \\
& \text { - median }=20
\end{aligned}
$$

* principal function of median filters is to force points with distinct intensity level to be more like their neighbors
* The isolated clusters of pixels that are light or dark WRT their neighbors \& whore area is I ers than $\frac{m^{2}}{2}$ [one-half the filth area] ale eliminated by a $m \times m$ median filter * In this case elimination means, forced to the median intensity of the neighbor * larger clusters are affected considerably tess.
* median represents $\Rightarrow 50^{\text {th }}$ percentile of a ranked set of the no
- en $100^{\text {th }}$ percentile \Rightarrow max filter which is useful for finding the brightest points in an image
* The response of a 3×3 max filter is given by $R=\max \left\{z_{k} \mid k=1,2,-a\right\}$
* $0^{\text {th }}$ percentile filter is min filter is used for the opposite purpose.

a b c
FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
sharpening spatial filters
* objective of sharpening is to highlight transitions in intensity.
* appins:-ranging from elelthonie printing \& medical Imaging, industrial inspection \& autonomous guidance in military system.
* image blurring in spatial domain is accomplished dy pixel averaging
in a neighborhood
* averaging is analogous to integration
* so we can conclude the sharpening can be accomplished by spatial different
* the strength of the response of a derivative operator is proportional to the degree of intensity discontinuity of the image at the point at which the operator is applied
* Thus image differentiation en hangs edges and other discontinuities such as noises 4 deemphasizes areas with slowly varying intensities.

Foundation

* sharpening filters are based on first \& second-order derivatives respectus.
* to simplify the explanation Let us initially focus on one -dimensional derivatives
* we are interested in the behavior of there derivatives in the areas of
(i) Constant intensity
(ii) at the onset \& end of discontinuities Cstep \& ramp dis continuities)
\& (iii) along intensity ramps
* There types of discontinuities can be used to model noise points, lines 4 edgy in an image.
* The behavior of derivatives during transitions into \& out of these image features also is of interest
\rightarrow The derivatives of a digital functions are defined in terms of differences
* There ale various ways to defines these differences.
(1) first derivatives
+ must be zero in areas of constant intensity
2 must be nonzero at the onset of a intensity step or ramp
3 must be non zero along ramps
(2) second-derivatiles
+ must be zero in constant areas
2 must be nonzew at the onset $\&$ end of an intensity step or ramp
$3^{\text {must be zero along ramps of }}$ constant slope
* basic defn of 1 st-order delivatile of one-dimensional fun $f(x)$ is

$$
\begin{equation*}
\frac{\partial f}{\partial x}=f(x+1)-f(x) \tag{1}
\end{equation*}
$$

* second-order derivative of $f(x)$

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1)+f(x-1)-2 f(x) \tag{2}
\end{equation*}
$$

* scan line \Rightarrow values are intensity values. which ale plotted as dot in fig@
* big (a) intensity ramp, 3 sections of constant, intensity step
$* O \Rightarrow$ onset or end of intensity transistion
* when computing $1^{\text {st }}$ detivative $a+$ lock x we subtract the value of fun at the location from next point. Look-ahead operation
* to compute the gnoderivatile we wee the previous $\&$ next points.
* Let us consider the 3 properties of 1 st 4 2no derivathes we encounter
area of constant intensity
- both devivaties are zeros
[so condo ${ }^{n} 1$ is statisfied for bot]
(2) An intensity ramp followed by a step
- $1^{\text {st }}$ derivative is non-zero at the onset of the ramp and the step
- and derivative is non -zen wo at the onset and end of both the ramp $\&$ she
[and property is satisfied]
(3) $1^{\text {st }}$ derivative is non $3 \operatorname{ero}$

4 and is zen along the ramp
Note that the sign of the second derivative Changes at the onset and end of a step or a ramp

* fig (b) ina step transition a line joining these 2 values crosses the horizontal axis mid way blt' 2 extremes. This $3 e r o$
* This sew crossing property is quite useful for locating edges.
* edges in digital images often are ramp like transitions in intensity
in which care
is derivative of the image would result in thickedqes 00 the derivative is non-zero along the ramp
* gino derivative would produce a double edge one pixel thick, separated by Jew
\therefore 2 no derivative enhances fine detail much better than the ist derivative 4 is ideally suited for sharpening images
using the second derivative for Image Sharpening. The Laplacian
* Implementation of 2-D $2 n$ order derivatives \& their uses for 1 mage sharpening.
* The approach consists of defining a discrete formulation of the second-order derivative \& then constructing a filter mask based on that formulation
* Isotropic filters, whose response is inderen-- dent of the direction of the discontinuities in the image to which the filter is Applied
* Istoropic filter are rotation invariant [rotating the image \& then applying the filter give same result as applying the filter to the Image first 4 then rotating the result?.
* simplest isotropic derivative operator Is Laplacian which for a function (image) $f(x, y)$ of 2 variables is defined as [Rosenfed \& KKK 1982]

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \rightarrow 3
$$

* 0° derivatives of any order are linear pen, the Laplacian is a linear operator
using eq (2) (2noorda)

$$
\frac{\partial^{2} f}{\partial x^{2}}=f(x+1, y)+f(x-1, y)-2 f(x, y)
$$

$$
\rightarrow(x-\text { dilen })
$$

4 in y-dizen

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y^{2}}=f(x, y+1)+f(x, y-1)-2 f(x, y) \tag{5}
\end{equation*}
$$

- the discrete Laplacian of 2 variable is

$$
\begin{align*}
\nabla^{2} f(x, y) & =f(x+1, y)+f(x-1, y)+f(x, y+1) \\
& +f(x, y-1)-4 f(x, 4) \rightarrow \text { b }
\end{align*}
$$

क this eqn can de implemented using
the filter mask shown in fig 3.37 © Which gives an isothopic result for rotations in increments of 90°

* The diagonal directions can be incorporated $y+1$ y $y-1$ in the deft of the digital laplacian
 by adding 2 more terms in eq 4,4
\therefore pain diagonal term

$$
\text { also contains }-2 f(x, 4)
$$

\therefore - total subtracted from the difference term now would he $-8 f(x, 4)$.
\rightarrow This can we used for filter mask ineplementation of fig 3.37 (b).

* This mask yields isotropic results in increments of 45°

90°		
0	1	0
1	-4	1
0	1	0

45		
1	1	1
1	-8	1
1	1	1

3.37 (2)
$3.3+6$

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

* because the Laplacian is derivative operator, it uses highlights intensity discontinuities in an image \& demphasizes regions with slowly varying intensity level
* produce images that have grayish edge lines 4 other discontinuities in an image all superimposed on adark featureless back g wound
* Laplacian for image sharpening

$$
g(x, y)=f(x, 4)+c\left[\nabla^{2} f(x, 4)\right]
$$

$f(x, y) \rightarrow$ ils mare
$g(x, 4)$ - sharpened image

$$
c=-1=\text { constant } \quad(\text { sub })
$$

1 if other filter ane use(add)
unsharp masking \& Highboost filtering

* A process that has been used by the prising \& publishing industry for many years is to sharpen images consists of subtracting an unsharp (smoothed) version of an Image from the original image
* Th is process is called unsharp masking
* 2 consists of foll step

1. Blur the original image
2. subtract the blurred image from the original (the resulting difference is (aIled the mask).
3. Add the mask to the original

* $\bar{f}(x, y) \Rightarrow$ denote blurred image
* unshalp masking is expressed in eqn form as follows

$$
g_{\text {mask }}(x, y)=f(x, y)-\bar{f}(x, y)
$$

* Then we add a weighted portion of the mask bacle to the original image

$$
\begin{equation*}
g(x, y)=f(x, y)+k * g_{\text {mask }}(x, y) \tag{2}
\end{equation*}
$$

$K \geqslant 0$ for generality
$k=1$ we have unshalp masking
$K>1$, process is referred as high boost filtering
$K<1$, de-emphasizes the contribution of the un-sharp mask
\qquad original
signal

using first-order derivatives for (Non-llnear)
Image sharpening - The Gradient

* 1st derivatives in image processing are implemented using the magnitude of the gradient
* for a function $f(x, y)$, the gradient of " f " at coordinates (x, y) is defined as the 2-dimensional column vector

$$
\nabla f \equiv \operatorname{grad}(f) \equiv\left[\begin{array}{l}
g_{x} \tag{10}\\
g_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]-
$$

* The Vector has important geometrical property. it points in the direction of the greatest rate of change of ' f ' at location (x, y)
* magnitude (length) of vector ∇f, denoted as $M(x, y)$, where

$$
\begin{equation*}
M(x, y)=\operatorname{mag}(\nabla f)=\sqrt{9 x^{2}+g_{y}^{2}} \tag{II}
\end{equation*}
$$

is the value at (x, y). of the rate of change in the direction of the gradient vector.

$$
\begin{equation*}
m(x, y) \approx\left|g_{x}\right|+\left|g_{y}\right| \rightarrow \tag{12}
\end{equation*}
$$

partial derivatives of eq (0) are not rotation invariant (uotho pic) buts the magnitude of the gradient hector is

* we define discrete approximation to the preceding equs \& from there formulate the appropriate filter mask
* 3×3 region of image [$Z s$ are intensityvalue]

f14(a) | z_{1} | z_{2} | z_{3} |
| :--- | :--- | :--- |
| z_{4} | z_{5} | z_{6} |
| z_{7} | z_{8} | z_{9} |

(1) Roberts cross-gradient operators

-1	0
0	1

0	-1
1	0

$$
g_{x}=\left(z_{8}-z_{5}\right) \quad \& \quad g_{y}\left(z_{6}-z_{5}\right)
$$

* 2 other detris proposed by Roberts in the early development of digital Image processing use cross different

$$
g_{x}=\left(z_{9}-z_{5}\right) \quad \& \quad g_{4}=\left(z_{8}-z_{6}\right)
$$

use eq 11 \& 13 we can compute gradient imaqe as

$$
\begin{gather*}
M(x, 4)=\sqrt{9 x^{2}+9_{4}} \\
M(x, y)=\left[\left(z_{9}-z_{5}\right)^{2}+\left(z_{8}-z_{6}\right)^{2}\right]^{1 / 2}
\end{gather*}
$$

If we ure eq (13) + (13)

$$
\begin{aligned}
M(x, y) & \approx|9 x|+\left|9_{4}\right| \\
M(x, y) & \approx\left|z_{9}-z_{5}\right|+\left|z_{8}-z_{6}\right|
\end{aligned}
$$

* The partial derivatives terms in eq(10) can be inelemented using 2 lineas bilter as shown in fis 6
* These masks are refered as

Roberts-cross-gradient operaton
(ii) sobel operatiy

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

* masks of evensizes don't have a center of symmetry
* The smallest filter mask is 3×3

$$
\begin{align*}
g_{x}=\frac{\partial f}{\partial x}=\left(z_{7}\right. & \left.+2 z_{8}+z_{9}\right) \\
& -\left(z_{1}+2 z_{2}+z_{3}\right) \tag{316}
\end{align*}
$$

4

$$
g_{4}=\frac{\partial f}{\partial y}=\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}\right)
$$

*There equ's can be implemented using masks of fig (c)

* Substituting $9 x+g_{4}$ in (n)

$$
\begin{align*}
M(x, 4) \cong & \left|\left(z_{7}+2 z_{8}+z_{9}\right)-\left(z_{1}+2 z_{2}+z_{3}\right)\right| \\
& +\left|\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}+z_{3}\right)\right| \tag{18}
\end{align*}
$$

* The masks are called sober operator
3.6 Sharpening Spatial Filters 165

DIP-XE

 DIP-XE

DIP-XE

DIP-XE
FIGURE 3.40
(a) Original image.
(b) Result of blurring with a Gaussian filter. (c) Unsharp mask. (d) Result of using unsharp masking.
(e) Result of using highboost filtering.

Module -3
Filtering, I mage Restoration
Preliminary concepts, The D FT of one variable, Extemion to functions of 2 variables, souse propletries of the $2 . D \mathrm{DFT}$, freq domain fitteling, A Model of the mintage degradation । Restoration process s. No sse no dels, restoration in the presence of noise, only-spatial fitteeng, homomorphie filtering
Ch $4: 4.2+04.7,4.9 .6, \mathrm{Ch}_{5} \div 5.2,5.3$
4.5 Extension to function of 2 variables]
4.5.1 The 2-D impulse and its shifting property

* The impulse, $\delta(t, z)$ of 2 continuous Variables $t \& z$ is defined as in

$$
\delta(t, z)= \begin{cases}\infty ; & \text { if } t=z=0 \\ 0 ; & \text { otherwise }\end{cases}
$$

$$
\delta(t)= \begin{cases}0 & \text { if } t \neq 0 \\ \infty & \text { if } t=0\end{cases}
$$

o; otherwise.

$$
4 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(t, z) d t d z=1
$$

- 2-D impulse exhibits shifting propel +4

$$
\int_{-\infty}^{\operatorname{as}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) \delta(t, z) d t d z=f(0,0)
$$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) \delta\left(t-t_{0}, z-z_{0}\right) d t d z=f\left(t_{0}, z_{0}\right)
$$

[shifting property yields the value of the fun $f(t, z)$ at the location of the impulse.
$*$ for discrete variables $x \& y$, the $2-D$ discrete impulse is defined as

$$
\delta(x, y)= \begin{cases}1 ; & \text { if } x=y=0 \\ 0 ; & \text { othelwise }\end{cases}
$$

\& its shifting property is

$$
\sum_{x=-\infty}^{\infty} \sum_{y_{i}-\infty}^{\infty} f(x, y) \cdot \delta(x, y)=f(0,0) \rightarrow 5
$$

er $\sum_{x_{i}-\infty}^{\infty} \sum_{y_{1}-\infty}^{\infty} f(x, y) \cdot \delta\left(x-x_{0}, y-y_{0}\right)=f\left(x_{0}, y_{0}\right)$.
4.5.2 The 2-D Continuous Fourier Transform pair
Left $f(t, z) \rightarrow$ continous function of 2 continuous valiables it $\& z$.

* 2-dimensional, continuous FT pair (Fr)
is given by

$$
\begin{aligned}
& F(\mu, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j 2 \pi(\mu t+v z)} d t d z \\
& f(t, z)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\mu, v) e^{j 2 \pi(\mu t+v z)} d \mu d v
\end{aligned}
$$

$\mu+v \rightarrow$ the variables
t $2 z \rightarrow$ are interpreted to be continuous spatial variably
(1) Fig shows a 2-D fun analogous to $1-D$ $F(t, z)=A+z)$

$$
F(\mu, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, z) e^{-j 2 \pi(\mu t+v z)} d t c
$$ $d t d z$

$$
=\int_{-T / 2}^{T / 2} \int_{-I / 2}^{z / 2} A e^{-j 2 \pi(\mu t+V z)} d t d z
$$

$$
\begin{aligned}
=A T z[& \left.\frac{\sin (\pi \mu T)}{\pi \mu \tau)}\right] \\
& {\left[\frac{\sin (\pi \vee z)}{(\pi \vee z)}\right] }
\end{aligned}
$$

$$
|F(\mu, v)|=A T z\left|\frac{\sin (\pi \mu r)}{(\pi \mu r)}\right|\left|\frac{\sin (\pi v z}{\pi v z}\right|
$$

$4.5 \cdot 3$
TWO - Dimensional sampling \& 2.0 sampling
Theorem

* sampling in 2 -dimensions can de modeled using the sampling function (2-D impulse train]

$$
\begin{align*}
& \text { Modeled } \\
& (2-D \text { impulse train }] \\
& S_{\Delta T A z}(t, z)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(t-m \Delta r, z-n \Delta z)
\end{align*}
$$

where
$\Delta T \& \Delta z$ all the separations bet' samples along 't'axis \& z-axis of the continuous fun $f(x, z)$.

* eq (a) represents a set of periodic impulses extending infinetly along the 2 axis as shown in fig below.

* multiplying $f(t, z)$ by $S_{\Delta T \Delta z}(t, z)$ yields the sampled fun
* function $f(t, z)$ is said to be band-limised, if its fourier transform
is o outside a rectangle established by the intervals $\left[-\mu_{m a x}, \mu_{\max }\right.$] $2\left[-V_{\max }, V_{\max }\right]_{\text {. }}$.

$$
\begin{align*}
F(\mu, v)=0 \text { for }|\mu| & \geq \mu_{\max } \text { o } \\
|v| & \geq u_{\max }
\end{align*}
$$

* The 2-dimensional sampling theorem states that a continuous, band-limited function $f(t, z)$ can be recovered with no error from a set of its samples if the sampling intervals are

$$
\begin{equation*}
\text { \& } \Delta z<\frac{1}{2 V_{\max }} \text { of the sal } \tag{11}
\end{equation*}
$$

or expressed in Hems of the sampling rate if

$$
\begin{align*}
& \frac{1}{\Delta T}>2 \mu_{\max } \\
& \& \frac{1}{\Delta Z}>2 \operatorname{lnmax}_{\text {max }}
\end{align*}
$$

* no information is lost if a 2-D, band-limited continuous fun is represented by samples a cquiled at rates greater than twice the highest freq contents of the function in both $\mu+V$-directions

(a) an over sampled fun

(b) under-sampud bun
4.5.y Aliasing in Images
* concept of aliasing to images \& several aspects related to image sampling \& resampling is discussed.
* $f(t, z)$ of 2 continuous variables t \& z can be band-limited in general only if it extends infinitely in both coordinate directions.
* Fy limiting the dilation of the function, introduces corrupting the freq components extenderig to infinity in the freq -domain
* 0 we canst sample a fun infinitely, aliasing is always present in digital Images
* There ale 2 principal manifestations of aliasing in Images
(i) spatial aliasing
\& ('i') Temporal aliasing
- spatial aliasing:' is due to undersampling
* Temporal aliasing: is related to related to time intervals bet' images in a sequence of images.
"wagon wheel" effect in which wheels with spokes in a sequence of images (for eq in amovie) appear to be rotating backward This is caused by the of wheel rotation in the sequence
* Spatial aliasing: The key concerns the in images arlen introducing features. such as jaggedness in of the appearance suprious highlights present in the of freq pattelns not prese original imaze
* The effects of aliasing can be reduced by slightly defocusing the some to the digitized so that high frequencies ale attenuated
* anti-aliasing filtering has to be done at the "front-end" before the image is sampled.
* blurring a digital image can reduce additional aliasing ar rifacts caused by resampling
image interpolation 4 resampling
* perfect reconstruction of a bandlinited image function from a set of its samples requires 2 -D convolution in spatial domain with a sinctuy
* WKt a perfect reconstruction requires interpolation using Infinite summation
* one of the most common appins of 2-D interpolation in image processing - is in image resing [zooming \& shrinking).
* zooming, nne viewed as over-sampling While shrinking may be viewed as under. sampling
* They ale applied to digital in ages
* A special case of nearest neighbor interpola--tion that ties in nicely with oversampling is zooming by pixel replication [which is applicable when we want to the the size of an image an integer no of times]
* If we ned to double the size of the image, we duplicate each column which doubles image size in horizontal
* Then we duplicate each row of the enlarge direction. image to double is used to enlarge
* The same procedure integer no of times the image any integerignment of each * The intensity level arsine by the fact pixel is predetermined are exact duplicates thatule is no of old location
* Image shrinking is done in a manner similar to zooming.
* under sampling is achieved dey row-column deletion. (to).
* example: to shrink an image by $1 / 2$, we delet evely other row \& column.
* To reduce aliasing, it is good Idea to blur an image slightly before shrinking it.
* An alternate technique is to super sample the original scene \& then reduce (resample) its size by row \& column deletion.
* This yield sharper results than with his yield (clear access to onignal
smoothing. (image is needed)
l ned
* If no access to original scene, super sampling is not an option.
- for image which hare strong edge content, the effects of aliasing ale seen as block-like image components called Jaggies
moire patterns! another typ of artifact which result from sampling scenes with periodic or nearly reliodie components of in digital Imam, the problem arises when scanning media print such as newspapers, magzines
* super Imposing one pattern on the other croats a beat pattern that has Hequencies not present in either of the original pattern. * the morie effect produced by 2 patterns of dots is discussed further,
* Newspapers $\&$ other printed materials make use of so called halftone dots which are black dots or ellipses whose sizes \& various joining schemes are used to stimulate gray tones.
4.5.5. The 2.D disclets Fourier Transforms \& its inverse
* 2-D discrete Fourier Transform DFT

$$
\begin{aligned}
& \text { 2.D discrete Fourier Trans } \\
& F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{x y}{N}\right)}
\end{aligned}
$$

$f(x, y) \rightarrow$ digital image of size $M \times N$
$U, V \rightarrow$ discrete values ranging from 0 to $\mathrm{M}-1$ \& O to $\mathrm{N}-1$ Resp.

* inverse $D F T$

$$
\begin{equation*}
f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{V=0}^{N^{-1}} F(u, v) e^{j 2 \pi\left(\frac{u x}{M}+\frac{2 u y}{N}\right)} \tag{16}
\end{equation*}
$$

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c) and (d), the sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show significant aliasing. Note that (d) masquerades as a "normal" image.

$a b c$
FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasi (b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visib (c) Result of blurring the image in (a) with a 3×3 averaging filter prior to resizing. The image is sligh more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Sig Compression Laboratory, University of California, Santa Barbara.)
generate rig. $4.10(\mathrm{v})$.

a b c
FIGURE 4.18 Illustration of jaggies. (a) A 1024×1024 digital image of a computer-generated negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear intol? (c) Result of blurring the image in (a) with a 5×5 averaging filter prior to resizing it to 25% wish interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

abc
 de f

FIGURE 4.20
Examples of the moiné effect. These are ink drawings, not digitized patterns. Superimposing one pattern on the ether is equivalent mathematically to multiplying the patterns

Color printing uses red, green. and blue dots to produce the sensation in the cye of continuous oolor.

FIGURE 4.21

A newspaper image of size 246×168 pixels sampled at 75 dpi showing a moiré pattern. The moiré pattern in this image is the interference pattern created between the $\pm 45^{\circ}$ orientation of the halftone dots and the north-south orientation of the sampling grid used to digitize the image.

a beat pattern that has frequencies not present in either of the original pas: terns. Note in particular the moiré effect produced by two patterns of dote al this is the effect of interest in the following discussion.

Newspapers and other printed materials make use of so called halfone dots, which are black dots or ellipses whose sizes and various joining schemes are used to simulate gray tones. As a rule, the following numbers are typiad newspapers are printed using 75 halftone dots per inch (dpi for short), magr zines use 133 dpi , and high-quality brochures use 175 dpi. Figure 4.21 show

* H. 6 Some proputies of the 2-D Discrete Fourier Transform [DFT]
, 4.6.1 Relationship between spatial \& frequency intervals
\% $f(t, z) \Rightarrow$ continuous fun
a $f(x, y) \Longrightarrow$ sampled form of $f(t, z)$ digital image which consist of $M \times N$ samples taken it? $7^{-} z^{\prime}$ directions resp.
* Let $\Delta T \& \Delta z \rightarrow$ denote the separn bet' samples.
* Separations bet' the corresponding discrete, Hequency domain variables are given by

$$
\begin{aligned}
\Delta U & =\frac{1}{M \Delta T} \rightarrow 1 \\
\text { \& } \Delta v & \rightarrow \frac{1}{N \Delta T} \rightarrow 2
\end{aligned}
$$

separation bet' samples in He domain are inversely p wportional both $t D$ the spacing bet' spatial samples no of samples
4.6.2 Translation \& Rotation

FTpais satisfies the fOl translation Properties

$$
\begin{aligned}
& f(x, y) e^{j 2 \pi\left(u_{0} x / m+v_{0} y / N\right)} \longrightarrow F\left(u-u_{0},\right. \\
&\left.u-v_{0}\right)
\end{aligned}
$$

4

$$
\begin{equation*}
f\left(x-x_{0}, 4-40\right) \longleftrightarrow F(u, v) e^{-j 2 \pi\left(x_{0} u / m\right.} \tag{3}
\end{equation*}
$$

* tying $f(x, y)$ by exponential Shows shifts the origin of $D F T$ to (u_{0}, u_{0})
* conversely sing $F(u, v)$ by negative exponential shifts the origin of

$$
f(x, y) \text { to }(x 0,40)
$$

* using the polar co-ordinates

$$
\begin{aligned}
& x=r \cos \theta, \quad y=r \sin \theta, \quad u=\omega \cos \psi \\
& v=\omega \sin \varphi
\end{aligned}
$$

results in

$$
f\left(\gamma, \theta+\theta_{0}\right) \longleftrightarrow F\left(\omega, \varphi+\theta_{0}\right)
$$

\Rightarrow rotating $f(x, 4)$ by an ange oo rotates $F(u, v)$ by the same angle conversly, rotating $F(u, v)$ rot fates $f(x, y)$ by the same angle

* $\sqrt{46 \cdot 3 \text { periodicity }}$

2-D FT \& its inverse are infinet infinitely periodic in the $u \neq V$ directions is

$$
\begin{align*}
& F(u, v)=F\left(u+k_{v}, v, u\right) \\
&=F\left(u, u+k_{2} N\right)=F\left(u+k_{1} M\right. \\
& f \tag{6}\\
& f(x, y)=f\left(x+k_{1} m, y\right)=f\left(x, y+k_{2} N\right) \\
&\left.=f\left(x+k_{1} M\right), y+k_{2} N\right) \longrightarrow
\end{align*}
$$

where $k_{1}+k_{2}$ are integers

* The periodicities of the Transforms 4 its inverse ace important sues in the implementation of DFT-based algorithms
* The transform data in the

$\frac{a}{b}$

FIGURE 4.23
Centering the Fourier transform. (a) A 1-D DFT showing an infinite number of periods.
(b) Shifted DFT obtained by multiplying $f(x)$ by $(-1)^{x}$ before computing $F(u)$. (c) A 2-D DFT showing an infinite number of periods. The solid area is the $M \times N$ data array, $F(u, v)$, obtained with Eq. (4.5-15). This array consists of four quarter periods. (d) A Shifted DFT obtained by multiplying $f(x, y)$ by $(-1)^{x+y}$
before computing $F(u, v)$. The data now contains one complete, centered period, as in (b).

* Consider the 1-D spectrum in above fig
* The transform data in the interval from 0 to $m-1$ consists of 2 -back to back half periods meeting at a point $\frac{M}{2}$.
* For displaying a filteling purposes, it is more convenient to hare in this interval a complete period of transform in which data ale contiguous as shown in fig b

$$
f(x) e^{j 2 \pi\left(u_{0} x / m\right)} \longleftrightarrow f\left(u-u_{0}\right)
$$

* multiplying $f(x)$ by exponential term shown shifts the data so that the orig in $F(0)$ is located to yo
* Let $L_{0}=m / 2$, the exponential tels becomes ejitx which is equal to
(-1) $x: \quad 0: 1 n+\operatorname{cog}$
- in this care

$$
\begin{aligned}
& \text { care } \\
& f(x)(-1)^{x} \Leftrightarrow F(u-m / 2)
\end{aligned}
$$

* plying $f(x)$ by $(-1)^{x}$ shifts the dater so that $F(0)$ is at the center of the interval $[0, M-1]$
* The principal is same far 2.D
* instead of 2 half reliods, the le are no u 4 quarter yeeiods meeting at the pt

$$
(m / 2, N / 2)
$$

* The dashed line comsponds to the infinite no of reeiods of $2-D D F$,
* If we shift data so that $F(0,0)$ is

$$
\begin{aligned}
& \operatorname{at}(\mathrm{N} / 2, \mathrm{~N} / 2) \\
& \left(U_{0}, b_{0}\right)=(\mathrm{N} / 2, N / 2)
\end{aligned}
$$

eq(3) besom

$$
f(x, y)(-1)^{x+y} \Longleftrightarrow F\left(u-\frac{M}{2}, u-\frac{M}{2}\right)
$$

\#
4.6.4 symmetry properties

Any real or complex fun $w(x, y)$ can de expressed as the sum of an even 4 odd part (each of which can be real or complex)

$$
\begin{equation*}
\omega(x, y)=\omega_{e}(x, y)+\omega_{0}(x, y) \rightarrow \tag{9}
\end{equation*}
$$

where even 4θ dd pacts are defined as

$$
\omega_{e}(x, 4) \triangleq \frac{\omega(x, 4)+\omega(-x-4)}{2}
$$

\& $\omega_{0}(x, y) \triangleq \omega(x, y)-\omega(-x-y)$
using

$$
\begin{equation*}
w_{e}(x, y)=w_{e}(-x,-4) \tag{a}
\end{equation*}
$$

\& $\omega_{0}(x, y)=-\omega_{0}(-x,-4)$ \qquad

* even fun's are said to be symmetric \& odd pun's are antisymmetric

$$
\text { we }(x, 4)=\text { we }(M-x, N-4) \rightarrow
$$

\& $\omega_{0}(x, y)=-\omega_{0}(M-x, N-y) \rightarrow$
where $M \& N \Rightarrow$ no of rows \& column of a 2-parlay

* kt product of 2 even $\& 2$ odd fun's sere 4 product of aneren 2 an odd fun is odd
* The only way a discrete fun ion be odd is if all its samples sum to zero.
* These properties lead to

$$
\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} w_{e}(x, y) \omega o(x, y)=0
$$

\therefore because the arguments of eq (3) is odd the result of summation is 0
eff.
Consider the $1-0$ seq

$$
\begin{aligned}
f & =\{f(0), f(1), f(2), f(3)\} \\
& =\{2,1,1,1\} \quad M=4
\end{aligned}
$$

(*) to test for evenness, the cond n

$$
\begin{aligned}
& f(x)=f(M-x) \quad=f(4-x) \\
& f(0)=f(4) ; f(1)=f(3) \\
& f(2)=f(2) ; f(3)=f(1)
\end{aligned}
$$

* any -4 point even seq $"$ has to have the form

$$
\{a, b, c, b\} \quad \begin{aligned}
& 2^{n 0} \text { \& } \$ \text { as } 1 \\
& p+\text { must be } e
\end{aligned}
$$

pt. must be equal
(2) An odd sean

$$
\begin{aligned}
\text { An odd } & =\{g(0), g(1), g(2), g(3)\} \\
& =\{0,-1,0,1\} \\
g(x) & =-g(4-x) \\
g(1) & =-g(3) \\
& =\{0,-b, 0, b\}
\end{aligned}
$$

* when M is an even no, a 1-D odd seq y has the property that the points at location 0 \& $\mathrm{m} / 2$ always are zero
* when M is odd, the $18+$ teem still has to be 0, but the remaining teem form pairs with equal value but opposite sign.
* $\{0,-1,0,1,0\}$ is neither odd nor even. even though the basic structure appears to be odd
* 000000

000000
$0 \quad 0 \quad-1010$
$000-2020$
is $o d d$
$00-1010$
000000

* adding another row \& column of o's would give a result i.e, neither odd nor even.
* A property used frequently is that FT of a real fun $f(x, y)$ is conjugate symmetry c

$$
F^{*}(u, v)=F(-u,-v)
$$

* If $f(x, y)$ is imaginary, its FT is conjugate antisymmetric

$$
\forall F^{*}(u, v)=\left[\sum_{x=0}^{m-1} \sum_{y=0}^{N^{-1}} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right.}\right.
$$

$$
\begin{aligned}
* F^{*}(u, v) & =\left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right)}\right]^{*} \\
& =\sum_{x=0}^{N-1} \sum_{4=0}^{N-1} f^{*}(x, y) e^{j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right)} \\
& =\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left[(-u) \frac{x}{M}+\frac{[-v] y}{N}\right]} \\
& =F(-u,-v)
\end{aligned}
$$

LE 4.1 Some metry perties of the DFT and its erse. $R(u, v)$ $I(u, v)$ are the 1 and imaginary tts of $F(u, v)$, pectively. The m complex dicates that a nction has onzero real and naginary parts.

Spatial Domain ${ }^{\dagger} \quad$ Frequency Domain ${ }^{\dagger}$

1) $\quad f(x, y)$ real $\Leftrightarrow \quad F^{*}(u, v)=F(-u,-v)$
2) $\quad f(x, y)$ imaginary $\Leftrightarrow F^{*}(-u,-v)=-F(u, v)$
3) $\quad f(x, y)$ real and odd $\quad \Leftrightarrow \quad F(u, v)$ imaginary and odd
4) $f(x, y)$ imaginary and even $\Leftrightarrow F(u, v)$ imaginary and even
5) $f(x, y)$ imaginary and odd $\Leftrightarrow F(u, v)$ real and odd
6) $f(x, y)$ complex and even $\Leftrightarrow F(u, v)$ complex and even
7) $f(x, y)$ complex and odd $\Leftrightarrow F(u, v)$ complex and odd
'Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range $[0, M-1]$, and y, and v in the range $[0, N-1]$. To say that a complex function is even means that its real and imaginary part are even, and similarly for an odd complex function.

For example, in property 3 we see that a real function with elements
(1)

$$
\begin{aligned}
& f(x)=\{1,2,3,4\} \\
& F(u)=\{10,[-2+2 j],-2,[-2-2 j]\}
\end{aligned}
$$

if $f(x, y)$ real \Leftrightarrow then $R(u, v)$ even.
I (u, v) od d
$R(u, v)=\{10,-2,-2,-2\}$ is even
$I(u, v)=\{0,+2 i, 0,-2]$ is odd
(2)

$$
\begin{aligned}
& f(x)=j\{1,2,3,4\} \Leftrightarrow F(u)=\{(2.5 j), \\
& F(u)=\{2.5 j, 0.5-0.5 j,-0.5 j,-0.5-0.5 j\} \\
& R(u, v)=\{0,0.5,0,-0.5\} \text { is odd } \\
& I(u, v)=\{0,0.5,0,-0.5 \\
& I(u, v)=\{2.5,-0.5,-0.5,-0.5\} \text { is }
\end{aligned}
$$ oren

Property 3:-
If (x, y) is real fun, the real part of its DFT is even 4 the odd pact is $0 d d$ proof \& $F(u, v)$ is complex.

$$
F(u, v)=R(u, v)+j I(u, v)
$$

Then $F^{*}(u, v)=R(u, v)-j I(u, v)$
$M=1 \quad N^{-1}$

$$
F(-u,-v)=R(-u,-v)+j I(-u,-v)
$$

whet if $f(x, y)$ is real, then

$$
\begin{gathered}
F^{*}(u, v)=F(-u,-v) \\
R(u, v)=R(-u,-v)=\text { even } \\
4 I(u, v)=-I(-u,-u)=\text { odd. }
\end{gathered}
$$

property 8:
ST If (x, y) is real \& even, then the? imaginary part of $F(u, v)$ is 0 real \&
[to prove property 8, we need to show if $f(x, y)$ is real \& even Imaginary part of $F(u, v)$ is 0]

$$
\begin{aligned}
& F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N^{-1}} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{\Delta y}{N}\right)} \\
& =\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[f_{r}(x, y)\right] e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right]} \\
& =\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[f_{\gamma}(x, 4)\right] e^{-j 2 \pi\left(\frac{4 x}{M}\right)} \cdot e^{-j 2 \pi\left(\frac{u y}{N}\right)} \\
& =\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \text { [even] [even-jodd] [even-jodd] } \\
& =\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \text { [even] [even.even - 2jeren.odd - odd.odd] }
\end{aligned}
$$

$$
\begin{gathered}
=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \text { [even .even] }-2 j \sum_{x=0}^{M-1} \sum_{4 ; 0}^{N-1} \text { [even .odd] } \\
=\sum_{x=0}^{M-1} \sum_{x=0}^{M-1}[\text { even.even] }
\end{gathered}
$$

- Real

The second teem is Imaginary componeny $=0$ according to $F^{*}(u, v)=F(-u,-v)$
4.6.5 Fourier spectrum \& p hare Angle

* 2.D DFT is complex in qenelal, we can expless in polar form

$$
\begin{equation*}
F(u, v)=|F(u, v)| e^{j \phi(u, v)} \tag{15}
\end{equation*}
$$

where
the magnitude

$$
\begin{equation*}
|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2} \tag{416}
\end{equation*}
$$

as called Fourier spectrum
[freq spectrum]

$$
\begin{equation*}
\phi(u, v)=\arctan \left[\frac{I(u, v)}{R(u, v)}\right] \tag{17}
\end{equation*}
$$

is the phase angle [atan2 (Image, Real)] MAT LAS

* Power spectrum

$$
\begin{align*}
P(u, v) & =|F(u, v)|^{2} \\
& =R^{2}(u, v)+I^{2}(u, v)
\end{align*}
$$

$R \rightarrow$ real Pal of $F(u, v)$
$I \rightarrow$ Imaginary - .,
$u=0,1,2, \ldots m-1$
$V=0,1,2 \cdots N-1$
$|F(u, v)|, \phi(u, v) \& P(u, v) \Rightarrow$ arrays of size $m \times N$.

* FT of a real fun is congugate Symmetric $\quad F^{*}(u, v)=F(-u,-v)$ which implies that the spectrum has erensymmetry about the origin

$$
|F(u, v)|=|F(-u,-v)| \rightarrow 19
$$

* The phase ange exhibits the $\frac{104}{-}$ odd symmetry about the origin

$$
\begin{aligned}
& \phi(u, v)=-\phi(-u,-v) \\
& F(0,0)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)
\end{aligned}
$$

* which indicates the zero. freq teem is α to the are rage value of $f(x, y)$

$$
\begin{align*}
F(0,0) & =M N \cdot \frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \tag{21}\\
& =M N \bar{f}(x, y) \longrightarrow 21
\end{align*}
$$

$\bar{f} \Rightarrow$ avg value of f then

$$
|F(0,0)|=M N|\tilde{F}(\gamma, 4)| \text {. }
$$

because the proportionality constant MN usually is large, IF $(0,0)$ I typically is the largest component of the spectrum dy a factor that can be several ordess of magnitude larger than other term.

* $F(0,0) \Rightarrow d C$ component of transform
2.D convolution Theorem
circular
* 2.Drcon volution

$$
f(x, y) \circledast h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N^{\prime}} f(m, n) h(x-m, y-n)
$$

for $x=0,1,2 \cdots M-1$

$$
Y=0,1,2 \ldots N-1
$$

* The $2-D$ convolution theorem is given dy the expressions

$$
f(x, y) \circledast h(x, y) \stackrel{I T_{T}}{ } \quad F(u, v) \quad H(u, v)
$$

\& the conses

$$
f(x, y) h(x, y) \stackrel{F T}{\longrightarrow} F(u, v)(\forall) H(u, v)
$$

* $1-D$

$$
\begin{equation*}
f(x) \circledast h(x)=\sum_{m=0}^{M-1} f(x) h(x-m) \tag{425}
\end{equation*}
$$

* If we use DFT \& the convointhoorem, to Obtain the same result as in the left column of ting 4.28 , we must take into account the periodicity inherent in the expression of DFT.
* This is equivalent to convoluting the 2 periodic function (4.28 (f) $f(9)$)
* The procedure is simper. Same.
* Proceeding in the similar manner will yield the result shown in fig $4.28(j)$ which is obviously incorrect.
* Since we ale convoluting 2 periodic signals, the result itself is periodic
* The closeness of the periods is such that they interfere with each other to cause wat wrap around error
* This problem canbesolud by using zero padding method
* If we append Fe jews to both furs so that they hare same length 4 denoted by P; $P \geq A+B-1$ 26
$2 . D$
- Let $f(x, y)$ \& $h(x, y)$ be 2 image arrays of sizes $A \times B$ \& $C \times D$ respectively.
* wraparound error in their convolution can be avoided by padding these functions with zen's as follows

$$
\begin{aligned}
& f_{p}(x, y)=\left\{\begin{array}{cl}
f(x, y) ; & 0 \leq x \leq A-1 \text { \& } \\
0 \leq 4 \leq B-1 \\
0 ; & A \leq x \leq P \text { or } \\
B \leq 4 \leq Q
\end{array}\right. \\
& \text { t } \\
& h_{p}(x, y)=\left\{\begin{aligned}
& h(x, y) ; 0 \leq x \leq c-1 \quad \& \quad 0 \leq \varphi \leq D-1 \\
& 0 ; c \leq x \leq p \text { or } \\
& D \leq \varphi \leq c a
\end{aligned} \quad \rightarrow 28\right.
\end{aligned}
$$

with

$$
\begin{array}{rl}
P & \geq A+C-1 \\
4 \quad Q & 2 g+D-1 \tag{30}
\end{array}
$$

b The resulting padded images are of sine $p \times Q$. If both arrays are of the Came size ' MXN, then we sequit

$$
\downarrow
$$

$$
\begin{gather*}
p \geq 2 m-1 \\
4 a \geq 2 N-1
\end{gather*}
$$

* If one or both of the furs of 4.28 @at (5) were not zero at the end of the interval, then a discontinuity would be created when Jews were appended to the fut to eliminate wraparound ensor
* This is analogous to xly a fun by a box, which in the freq domain would imply convaln of original transform with a sine fun.
* This would create frequency leakax caused by high freq components of sincfun.
* This produces a blocky effect on
* This can be reduced, by sling the max
sampled fun by another fun that tapers smoothly to near sew at bothends of the sampled record to dapen dampen the shout transit (high fug comp) of the box.
* This approach is windowing on apodizing
(1) complete the linear convolution bet

$$
x[m, n]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { + } h[m, n]=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
$$

tho' matrix method
(1) size of

$$
\begin{aligned}
& x[m, n]=M_{1} \times N_{1}=2 \times 2 \\
& h[m, n]=M_{2} \times N_{2}=2 \times 2
\end{aligned}
$$

\therefore convoluted matrix six
will be $Y[M, N]=M_{3} \times N_{3}$

$$
\begin{aligned}
& M_{3}=M_{1}+M_{2}-1=2+2-1=3 \\
& N_{3}=N_{1}+N_{2}-1=2+2-1 \\
& -y[m, n]=3 \times 3
\end{aligned}
$$

(2) The block matrix
\Rightarrow no of block matrix depends on the no of rows of $x[m, n]$

* In this care $x[m, n]$ has 2 rows $\therefore 0$ no of block matrix is 2
HO_{2} \& H_{1}
no of zens to be appended $=$ no of column in Ho in $h[m, n]$ -1
$x[m, n]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow$ used to form H_{0}
(3) Stejls in formation of tocte matrix Ho
(1) Ist element is intelted in 4_{0}

$$
\begin{aligned}
& H_{0}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad \text { only one zero is } \\
& \text { inselted as } \\
& \text { no of zens }=\text { no of columns in } h[m-n]-1 \\
& 2-1=1
\end{aligned}
$$

(2) 2 no elen

$$
H_{0}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

(3) $H_{0}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 2\end{array}\right]$
clement is sniffer
(3) HI

$$
H_{1}=\left[\begin{array}{ll}
3 & 0 \\
4 & 3 \\
0 & 4
\end{array}\right]
$$

(3) steps in the formation of block Toeplit 2 matrin
no of zews to be appended in is

$$
=\text { no of rous of } h[m, n]-1
$$

$$
\begin{aligned}
& \text { (6) } \\
& \begin{array}{l}
A=\left[\begin{array}{cc}
H 0, & 0 \\
H, & H 0 \\
0, & H 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
3 & 0 & 1 & 0 \\
4 & 3 & 2 & 1 \\
0 & 4 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & 0 & 4 & 3 \\
0 & 0 & 0 & 4
\end{array}\right.
\end{array} \\
& \text { 6) } 4(m, n) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0
\end{array}\right]\left[\begin{array}{ll}
00 & 04
\end{array}\right] \\
& y[m, n]=\left[\begin{array}{ccc}
5 & 16 & 12 \\
22 & 60 & 40 \\
21, & 52 & 32
\end{array}\right]
\end{aligned}
$$

(2) circular convolution

$$
x[m, n]=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad h[m, n]=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right]
$$

(1) $H_{0}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right] \quad H_{1}=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$
(2) $A=\left[\begin{array}{ll}H_{0} & H 1 \\ H_{1} & 40\end{array}\right]=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1\end{array}\right]$

$$
\begin{aligned}
& \text { (3) } \\
& y=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3 \\
3 & 4 & 1 & 2 \\
4 & 3 & 2 & 1
\end{array}\right] \times\left[\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right]=\left[\begin{array}{l}
70 \\
68 \\
62 \\
60
\end{array}\right] \\
& y[m, n]=\left[\begin{array}{ll}
70 & 68 \\
62 & 60
\end{array}\right]
\end{aligned}
$$

Expression(s)

1) Discrete Fourier
transform (DFT)
of $f(x, y)$
2) Inverse discrete

Fourier transform
(IDFT) of $F(u, v)$
3) Polar representation
4) Spectrum
5) Phase angle
6) Power spectrum
7) Average value

$$
F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}
$$

$$
f(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}
$$

$$
F(u, v)=|F(u, v)| e^{j \phi(u, v)}
$$

$$
|F(u, v)|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}
$$

$$
R=\operatorname{Real}(F) ; \quad I=\operatorname{Imag}(F)
$$

$$
\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]
$$

$$
P(u, v)=|F(u, v)|^{2}
$$

$$
\bar{f}(x, y)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)=\frac{1}{M N} F(0,0)
$$

Itering in the Frequency Domain

Name
Expression(s)
8) Periodicity (k_{1} and k_{2} are integers)
9) Convolution
10) Correlation
11) Separability
12) Obtaining the inverse Fourier transform using a forward transform algorithm.

$$
\left.\left.\begin{array}{rl}
F(u, v) & =F\left(u+k_{1} M, v\right)=F\left(u, v+k_{2} N\right) \\
& =F\left(u+k_{1} M, v+k_{2} N\right) \\
f(x, y) & =f\left(x+k_{1} M, y\right)=f\left(x, y+k_{2} N\right) \\
& =f\left(x+k_{1} M, y+k_{2} N\right) \\
f(x, y) \nLeftarrow h(x, y)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n) \\
f(x, y) & \approx h(x, y)
\end{array}\right) \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{*}(m, n) h(x+m, y+n)\right) ~ l
$$

The 2-D DFT can be computed by computing 1-D DFT transforms along the rows (columns) of the image, followed by 1-D transforms along the columns (rows) of the result. See Section 4.11.1.

$$
M N f^{*}(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi(u x / M+v y / N)}
$$

This equation indicates that inputting $F^{*}(u, v)$ into an algorithm that computes the forward transform (right side of above equation) yields $M N f^{*}(x, y)$. Taking the complex conjugate and dividing by $M N$ gives the desired inverse. See Section 4.11.2.

Table 4.3 summarizes some important DFT pairs. Although our focus is on discrete functions, the last two entries in the table are Fourier transform pairs that can be derived only for continuous variables (note the use of continuous variable notation). We include them here because, with proper interpretation, they are quite useful in digital image processing. The differentiation pair can

Name

DFT Pairs

1) Symmetry properties
2) Linearity
3) Translation (general)
4) Translation to center of the frequency rectangle, (M/2,N/2)
5) Rotation
6) Convolution theorem ${ }^{\dagger}$

$$
\begin{aligned}
& f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right) \\
& x=r \cos \theta \quad y=r \sin \theta \quad u=\omega \cos \varphi \quad v=\omega \sin \varphi
\end{aligned}
$$

See Table 4.1
$a f_{1}(x, y)+b f_{2}(x, y) \Leftrightarrow a F_{1}(u, v)+b F_{2}(u, v)$
$f(x, y) e^{j 2 \pi\left(u_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right)$
$f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) e^{-j 2 \pi\left(u x_{0} / M+v y_{d} / N\right)}$
$f(x, y)(-1)^{x+y} \Leftrightarrow F(u-M / 2, v-N / 2)$
$f(x-M / 2, y-N / 2) \Leftrightarrow F(u, v)(-1)^{u+v}$
$f(x, y) \star h(x, y) \Leftrightarrow F(u, v) H(u, v)$
$f(x, y) h(x, y) \Leftrightarrow F(u, v) \star H(u, v)$
Name

DFT Pairs

7) Correlation theorem ${ }^{\dagger}$

$$
f(x, y) \stackrel{\text { ¿े }}{ } h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v)
$$

impulse
9) Rectangle $\quad \operatorname{rect}[a, b] \Leftrightarrow a b \frac{\sin (\pi u a)}{(\pi u a)} \frac{\sin (\pi v b)}{(\pi v b)} e^{-j \pi(u a+v b)}$
10) Sine

$$
\sin \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow
$$

$$
j \frac{1}{2}\left[\delta\left(u+M u_{0}, v+N v_{0}\right)-\delta\left(u-M u_{0}, v-N v_{0}\right)\right]
$$

11) Cosine

$$
\begin{aligned}
& \cos \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& \quad \frac{1}{2}\left[\delta\left(u+M u_{0}, v+N v_{0}\right)+\delta\left(u-M u_{0}, v-N v_{0}\right)\right]
\end{aligned}
$$

The following Fourier transform pairs are derivable only for continuous variables, denoted as before by t and z for spatial variables and by μ and ν for frequency variables. These results can be used for DFT work by sampling the continuous forms.
12) Differentiation

$$
\left(\frac{\partial}{\partial t}\right)^{m}\left(\frac{\partial}{\partial z}\right)^{n} f(t, z) \Leftrightarrow(j 2 \pi \mu)^{m}(j 2 \pi \nu)^{n} F(\mu, \nu)
$$

(The expressions
$\begin{aligned} & \text { on the right } \\ & \text { assume that }\end{aligned} \quad \frac{\partial^{m} f(t, z)}{\partial t^{m}} \Leftrightarrow(j 2 \pi \mu)^{m} F(\mu, \nu) ; \frac{\partial^{n} f(t, z)}{\partial z^{n}} \Leftrightarrow(j 2 \pi \nu)^{n} F(\mu, \nu)$ $f(\pm \infty, \pm \infty)=0$.
13) Gaussian $\quad A 2 \pi \sigma^{2} e^{-2 \pi^{2} \sigma^{2}\left(r^{2}+z^{2}\right)} \Leftrightarrow A e^{-\left(\mu^{2}+\nu^{2}\right) / 2 \sigma^{2}}$ (A is a constant)
${ }^{1}$ Assumes that the functions have been extended by zero padding. Convolution and correlation ary associative, commutative, and distributive.
be used to derive the frequency-domain eouivalent of the Laplacian defined in

Understanding the image in Fourier Domain

* DFT tells us what frequencies are present in the image \& their relative strengths.
* Frequency is directly related to the rate of change. 0° we can associate DFT with patterns of intensity variations in the image.
* Few observations $u(m, n)=f(x, y)$

$$
u(k, l)=F(u, v)
$$

(i) $\begin{aligned} & U=V=0 \\ & x=4=0\end{aligned}$ is a $D C$ component (zen freq) $x=4=0$
(ii) Neal the origin $(x=y=0)$ of fled space, low frequencies exist which correspond to slowly varying components in the lware es. background in any image is smooth grey-lerel variations
(ii) As we move away from origin, we encounter teems in freq space at high freqis. [faster 4 baster grey level variation in the image]
Edges of objects \& Other components (noise) Edges of characterize by abrupt changes
of an images ale in grey lexus
in
es. sudden change in grey level is boundary of a petal in an imare

* TO avoid problems with displaying complex -valued transform $F(u, v)$ of an image $f(x, y)$, a common approach is to display only the magnitude \& Ignon the phase of $F(u, v)$.
* origin of the image is shifted to image Centre

Before centralization

after contralixatio

* Apter shifting the origin to center of image, lovestfleqcomef are at centre of the pres as we go away from centre

472 Frequen
H.7 The BASICS of Filtering is frequency domain
[Image enhancement in treqdomain: MoBasic properties of the domain 4. 4 b oulc seers of filtering in tues 4.5 of viputa)
4.7.1 Additional characteristics of Heed domain Let us consider the 2.D DFT eq 4

$$
F(u, v)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{u y}{N}\right)}
$$

(*) each term of $F(u, v)$ contains all values of $f(x, y)$ modified by the values of exponential terms
(3) some qenelal ρ statements can be made about the relationship bed the freq component of FT \& spatial featull of an 1 mare]
(*) Frequency is directly related to spatial rates of change of intensity variations in an image
() The slowest varying the comp onent $(u=v=0)$ is proportional to the average intensity of an image.
(*) As we move away from the origin of the transform, the low frequencies correspond It the slowly Valying intensity components of an image

* As we more further away from the origin the higher frequencies begin to correspond to faster \& faster intensity changes in the image [edges of objects \& other componem of image chavactivied by abrupt changes in intends?
- Filtering techniques in freq domain are based on modifying the FT to achieve a specific objective of then computing the IDFT to get back to the image domain
* $F(u, v)=\mid F u, v) \mid e^{j \phi(u, v)}$

Wile the 2 components of $D F T$ are magnitude (spectrum) \& the phase angle.

* Visual analysis of phase component is not rely useful.

Frequency Domain filteling fundamentals

* Filtering in frequency domain tomtits of modifying the FT of an triage if then computing the singers Haw form to obtain the processed result.
x For a given digital image $f(x, y)$ of size $M \times N$, the basic filtering eq is of the form

$$
\begin{align*}
& \text { The form } \tag{1}\\
& g(x, y)=F^{-1}[H(u, v) F(u, v j]
\end{align*}
$$

where

$$
F^{-} \rightarrow I D F T
$$

$F(u, v) \rightarrow$ DFT of ils image
$H(u, v) \rightarrow$ DFT of a filter Fu^{4}
$g(x, y) \rightarrow$ filtered of image
the sire of all the functions are $M \times N$ same as ip imaqe

* The filter fun, modifies the transform of the ip image to yield a processed olp $g(x, y)$.
* $H(u, v)$ is simplified comideraluy by wing fun's that are symmetric about theirconter.

FIGURE 4.5: Block diagram of filtering in frequency domain

* This is accomplished by xling the ils ina pe by $(-1)^{x+y}$ prior to computing is transforms $f(x)(-1)^{x} \Leftrightarrow F(u-m / 2)$ [shifts the data so that $F(0)$ is at the center of the intural $[0, m-1]$
* ore of the simplest filters we can construes is a filter $H(u, V)$ is ' O ' at the center of the transform \& ' 1 ' elsecolele
* This filter would reject the determ \& p ass all v thee terms of $F(u, v)$.
* The $F(0,0)=M N \frac{1}{M N} \sum_{x=0}^{M-1} \sum_{4,0}^{N-1} f(x, 4)$

$$
=M N \widetilde{F}(x, 4)
$$

$$
{ }_{f}=a v g \text { value }
$$

from above eq wk the $d c$-teem is responsible for the average intensity of an image. (bi g4.70)
\& so setting it to zero will reduce the avg intensity of the op image to 3 ito

- The image becomes much darker.
[an avg of zero \Rightarrow existence of the (intensity)

ab
FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum ol (a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materiak Research, McMaster University, Hamilton, Ontario, Canada.)

258
 Chapter 4
 Filtering in the Frequency Domain

FIGURE 4.30

Result of filtering the image in Fig. 4.29(a) by setting to 0 the term $F(M / 2, N / 2)$ in the Fourier transform.

+ low frequencies in the transform ale related to slowly valying intensity component in the image (wales of room/clouduss sky in an outdoor scene) \& high frequencies ar l caused try sharp transitions in intensity such as edque finoike
* \therefore we would expect that a filter $H(u, v)$ that attenuates high Aeq's white passing low treqis (LPF] would blur an image.
while a filter with opposite property [high pars filter] would enhance sharp details but cause a reduction in constrast in the image ($4.31+13$) [HPF eliminate the d c rem]
* eq (1) $\quad g(x, u)=F^{-1}[H(u, v), F(u, v)]$ product of 2 fun's in freq domain = convoln in spatial domain.
* If the functions in questions ale not padded we can expect wraparound error cdiscusbe eallin

abc
def
FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using Eq.(4.7-1). We used $a=0.85$ in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).

FIGURE 4.32 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding. (c) Result of lowpass filtering with padding. Compare the light area of the vertical edges in (b) and (c).

* when we apply eq (1) without padding fig 4.72-(b) then the image when filtered using Gaussian LPF would result in blurring. \oint
* blurring is not uniform [top white edges are blunted but side white edges are not fig 4.92 (b)]
* so padding the ils image before applying eq (1) results in the filtered image where bluing is uniform.
* [padding the may en can create a uniform border around the puiodii sean big 4.1) 2 then convolving the blushing fun with the padded mosaic gives correct kist]
* padding is done in spatial domain
* eq (1) involve a filter that can be Specified either in spatial or freq domain
* the way to handle padding of 9 frequency domain filter is to construe the filter to be of the same size as the Image

a b
FIGURE 4.33 2-D image periodicity inherent in using the DFT. (a) Periodicity without image padding. (b) Periodicity after padding with 0 s (black). The dashed areas in the center correspond to the image in Fig. 4.32(a). (The thin white lines in both images are superimposed for clarity; they are not part of the data.)
4.7 The Basics of Filtering in the Frequency Domain

$\begin{array}{ll}a & c \\ b & d\end{array}$

FIGURE 4.34
(a) Original filter specified in the (centered) frequency domain.
(b) Spatial representation obtained by computing the IDFT of (a).
(c) Result of padding (b) to twice its length (note the discontinuities).
(d) Corresponding filter in the frequency domain obtained by computing the DFT of (c). Note the ringing caused by the discontinuities in (c). (The curves appear continuous because the points were joined to simplify visual analysis.)
compute I DFT of the filter to obtain the corresponding spatial filter.
1 pad that filter in spatial domain ? then compute its DFT to letwen to the Heq domain
fig $41.1-4$

* to work with specified filter shape in freq domain wo having to beconcemed with truncation is uss
- one approach is to zevo-pad mages \& then create filters in freq domain to be of the same six when using the DFT
* Let us analyse the phon angle of the filtered transform
\therefore DFT is complex + can de
expressed as

$$
F(u, v)=R(u, v)+j I(u, v)
$$

Then eq (1)

$$
g(x, y)=F^{-1}\left[\begin{array}{l}
H(u, v) R(u, v) \\
+j H(u, v) I(u, v)] \tag{3}
\end{array}\right.
$$

* phase angle is not altered by filtering because $H(u, V)$ cancels out when the ratio of Imaginary \& real pact is formed $\left[\frac{I(u, v)}{R(u, v)}\right]$
* filters that affect real t imaginary parts equally 4 thus hare no effect on the phase fare calud 3er-phase-shiff filter.

$$
4.7 .3
$$

a b

FIGURE 4.35
(a) Image resulting from multiplying by 0.5 the phase angle in Eq. (4.6-15) and then computing the IDFT. (b) The result of multiplying the phase by 0.25 . The spectrum was not changed in either of the two cases.

4.7.3 Summary of Steps for Filtering in the Frequency Domain

The material in the previous two sections can be summarized as follows:

1. Given an input image $f(x, y)$ of size $M \times N$, obtain the padding parameters P and Q from Eqs. (4.6-31) and (4.6-32). Typically, we select $P=2 M$ and $Q=2 N$.
2. Form a padded image, $f_{p}(x, y)$, of size $P \times Q$ by appending the necessary number of zeros to $f(x, y)$.
3. Multiply $f_{p}(x, y)$ by $(-1)^{x+y}$ to center its transform.
4. Compute the DFT, $F(u, v)$, of the image from step 3 .
5. Generate a real, symmetric filter function, $H(u, v)$, of size $P \times Q$ with center at coordinates $(P / 2, Q / 2){ }^{\dagger}$ Form the product $G(u, v)=H(u, v) F(u, v)$ using array multiplication; that is, $G(i, k)=H(i, k) F(i, k)$.
6. Obtain the processed image:

$$
g_{p}(x, y)=\left\{\operatorname{real}\left[\mathcal{J}^{-1}[G(u, v)]\right]\right\}(-1)^{x+y}
$$

where the real part is selected in order to ignore parasitic complex components resulting from computational inaccuracies, and the subscript p indicates that we are dealing with padded arrays.
7. Obtain the final processed result, $g(x, y)$, by extracting the $M \times N$ region from the top, left quadrant of $g_{p}(x, y)$.
Figure 4.36 illustrates the preceding steps. The legend in the figure explains the source of each image. If it were enlarged, Fig. 4.36(c) would show black dots interleaved in the image because negative intensities are clipped to 0 for display. Note in Fig. 4.36(h) the characteristic dark border exhibited by lowpass filtered images processed using zero padding.
4.7.4 Cowespondence bet' filtering in spatial \& fit denterim.

* The link bowen filtering in the spatial of freq domains is the convolution Theorem
* WKT, filtering in freq domain is defined as dion of a filter function $\mathrm{H}(u, V)$ times $F(u, v)$, the FT of ils image
* Given a filter $H(u, V)$, if we want to find its equivalent representation in spatial domain

If Let $f(x, y)=\delta(x, y)$

$$
\text { FT of } \delta(x, y)=1
$$

$\therefore F(u, v)=1$, Then

$$
\text { wit } g(x, y)=F^{-1}[H(u, v) F u, v]
$$

then filteled olp from above eq"

$$
\text { is } F^{-1}\{H(u, v)\} \text {. }
$$

* inverse FT of freq domaingilter which is conesponding filter in the spatial elomain
* Given spatial filter, we can obtain its freq domain rep. by taking EF of the spatial filter

$$
h(x, y) \& \xrightarrow{R_{T}} H(H, V)
$$

impulse respond

If the quantities in eq (4) all finite, such firtens ale called as FIR fils

- one way to take advantage of the properties of both domains is to specify a filter in freq domain, compute its IDFT, \& then use the resulting full-size spatial filter as a guide for constructing smaller spatial filter masks
* Let us discuss, by using Gaussian filses, how freq domain filters can be used as guides for specifying the coefficients of some of the small masks [box fitter, weignedary, sober, roband Inptacion)
* Filters based on Gaussian functions ale of particular interest, because, both the forward 4 inverse FT of 9 Gaussian fun's are real yaussian fun
$*$ Let $\mathrm{H}(u) \rightarrow$ denoted $1-D$ freq dentin Gaussian filter

$$
H(u)=A e^{-u^{2} / 2 \sigma^{2}}
$$

where $\sigma=$ std deviation of Gaussian cure

* The corresponding filter in spatial domain is obtained br taking IFT of $H(4)$

$$
\begin{equation*}
h(x)=\sqrt{2 \pi} \cdot A e^{-2 \pi^{2} \sigma^{2} x^{L}} \longrightarrow \tag{6}
\end{equation*}
$$

* These eqnis all important becaur
(i) They are FT pair, both components of which ale Gaussian a real. \therefore no wed tote concerned with complex ho \} , ~ G a u s s i a n c u l r e s ~ a r e ~ i n t u i t i v e ~ o f ~ easy to manipulate
(ii) The fun behaves reciprocally. when $H(u)$ has a broad profile Clarqe value of σ), $h(x)$ has a na now profile \& vicuersa
- if σ approaches infinity, then $H(u)$ tends to wards constant fuy \& $h(x)$ tends to wards an impulse which implies no filtering is freq \& spatial domains respectives
* fig 4.37 (a) 4 (b) shows plots of Gaussian LPF in freq domain \& the conesponding filter in spatial domans

4.37@A A 1-D Gaussian LPF in freq domain

* If ur e want to use the shape of $h(x)$ in fig 4.37 (6) as guide for specifying coefficients of a small spatial mask.
* the similarity bet' 2 filters is that all their values are the
* 0° we conclude that we can implemens LpFiltuing in spatial domain by using a mask with all positive coefficients - The nawower, the freq domain filter, the more it will attenuate the low freq's, resulting in pred blurring
* In spatial domain this means that a larger mask must be used to ${ }^{s} \mathrm{le}$ blurring
* Move complex filters can be constructed using the basic Gaussian fun of eq(5) $H(4)$
\& by we can construct a HpF as the difference of Gaumians

$$
H(u)=A e^{-u^{2} / 2 \sigma_{1}^{2}}-B e^{-u^{2} / 2 \sigma_{2}}{ }^{2}
$$

$$
\text { with } A \geq B \quad \& \sigma_{1}>\sigma_{2}
$$

* The corresponding filter in spatial domain

$$
h(x)=\sqrt{2 \pi} \sigma_{1} A e^{-2 \pi^{2} \sigma_{1}^{2} x^{2}}-\sqrt{2 \pi} \sigma_{2} B e^{-2 \pi^{2} \sigma_{2}^{2} x^{2}}
$$

* fig 4.37 (c) 4 (d) shows the plot

Laplacian

* The most important feature here is that $h(x)$ has a tvecenter teem with -vet teem on either side
* These 2 masics are sharpening filters which ace now HPF
- In spatial donar, filtering is implemented dy convolution dettilp imau 4 filter
x convolution filtering with swall filter mask is preferred 08 of speed f eare of meplementation in Hlw
* But filteling is more intultive in fleq domain,
* Here filteeing is implemented dy xlion of FT of ilpimax $\&$ TF of a filter

$$
\begin{aligned}
& \xrightarrow{f(x, y)}>h(x, y) \rightarrow g(x, y) \xrightarrow{F(u, v)} H(u, v) \xrightarrow{G(u, v)} \\
& g(x, y)=f(x, y) * h(x, y) \stackrel{F}{\longleftrightarrow} G(u, v)=F(u, v) \text {. } \\
& H(u, v) \\
& g(x, u)=F^{-1}[G(u, v)] \\
& =F^{-1}[F(u, v) \cdot h(u, v)] \\
& \text { Spatial } \\
& \text { fres } \\
& \text { filte }
\end{aligned}
$$

Homomorphic Filtering

* Homomorphir frittering is a freq domain phoidure to implore the appearance of an image by (a) Grey level range complession
(b) Contrast en hancement
* An Image $f(x, y)$ captured by cancer is formed dy multiplication of illumination \& reflectance
* Reflectance model is

$$
\begin{equation*}
f(x, y)=i(x, y) \cdot \gamma(x, y) \tag{1}
\end{equation*}
$$

where $f(x, y)=$ Grightuess of an image
$i(x, y)=$ illumination component
$r(x, y)=$ reflectance components

* some cases when the scene is not illuminate propels, or camera angl is not correct, some pact of the image appeal dak.
* in order to improve these tyres of images, reflectance $\&$ illumination has to be treated independently
(*) $i \rightarrow$ slowly varying $\Rightarrow 10$ of req component illumination changes "slowly" acres the scene, Thus it is related to low freq
(2) $r \rightarrow$ bast Varying \Rightarrow High freq component. surface refection changes 'sharply' achy the scene. Thus it is associated to high free

illuminati

Reflectance

reflectance model

* For image enhancement, illumination 4 reflectance have to be treated separately which is not possible in the domain as

$$
\begin{equation*}
F[f(x, y)] \neq F[j(x, y)] \cdot F[r(x, y)] \tag{2}
\end{equation*}
$$

* TO separate the reflectance 2 illumination component, Homomorphic filters are used
* The blocle dig is shown below

1. Take natural logarithm of ils imaore

$$
\begin{align*}
z(x, y) & =\ln [f(x, y)] \\
& =\ln [i(x, y) \cdot r(x, y)] \tag{3}\\
& =\ln [i(x, y)] \cdot \ln [r(x, y)]
\end{align*}
$$

2. FT on both side

$$
\begin{gathered}
F\{z(x, y)\}=F\{\ln [i(x, y)]\}+F\{\ln [r(x, u)]\} \\
z(u, v)=F_{i}(u, v)+F_{v}(u, v) \\
\text { here } z(u, v)=F\{z(u, v)\} \\
F_{i}(u, v)=F\{\ln [i(x, 4)]\} \\
F_{r}(u, v)=F\{\ln [r(x, 4)]\}
\end{gathered}
$$

3. Xly with filter $H(u, v)$ with eq (4)

$$
\begin{align*}
s(u, v)= & H(u, v) z(u, v) \\
= & H(u, v) F_{i}(u, v) \\
& +H(u, v) F_{y}(u, v)
\end{align*}
$$

4. The filtered image in spatial domain is taking IFT on both sick

$$
\begin{align*}
S(x, y)= & F^{-1}\{S(u, v)\} \\
= & F^{-1}\left\{H(u, v) F_{i}(u, v)\right\} \\
& +F^{-1}\left\{H(u, v) F_{r}(u, v)\right\} \\
= & i^{\prime}(x, u)+\gamma^{\prime}(x, u)
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
i^{\prime}(x, y) & =F^{-1}\left\{H(u, v) F_{i}(u, v)\right\} \rightarrow 8 \\
4 & \gamma^{\prime}(x, y) \tag{9}
\end{array}\right)=F^{-1}\left\{H(u, v) F_{\gamma}(u, v)\right\} \rightarrow \text { (9) }
$$

(3) Take inverse log transform

$$
\begin{align*}
g(x, 4) & =e^{S(x, 4)} \\
& =e^{j^{\prime}(x, 4)} \cdot e^{r^{\prime}(x, 4)} \\
& =i_{0}(x, 4) \cdot r_{0}(x, 4)
\end{align*}
$$

while $i_{0}(x, y)=e^{i^{\prime}(x, y)}$

$$
\begin{equation*}
\text { \& } \quad r_{0}(x, y)=e^{\gamma^{\prime}(x, y)} \tag{11}
\end{equation*}
$$

are illumination 4 reflectance components of the of p (p blessed) image

$$
g(x, y)=\text { enhanced image }
$$

* This method is based on a special cars of a class of systems known as homomorphic st stem.
* The homo morphic filter fun $H(u, v)$ is indicated in eq s.
* illumination component of an image is characterised dy slow spatial Vatiations while the reflectance component tends to vary abruptly, palticullakly at the junctions of dissimilar objects.
* The goal of monomorphic filteling is to suppress low frequencies anociated with ils image so that the net effect is enhacement.

* TU achieve the above mentioned goal, a filter has to be designed in such a wall that illumination component is supplersed 4 reflectance is enhanced as shown in abou D.P. P
* Low fleqis of FT of a log of an wage are associated with illumination o lug Hey's are associated with reflectance
* Although these are approximate anociation but can be used for image enhancement.
* Transfer fun is controlud in such a way that low then's are attenuated 2 high fleqs are passed untouched as shown in dis (5).
\& fig (b) Snows the chis section of filter
* If parameters γ_{L} \& γ_{H} ale chosen so that
$y_{L}<1 \Rightarrow$ tends to attenuate the contribution made by 10 W freq's Cillumination)
\& $\gamma_{H}>1 \Rightarrow$ amplify the contribution made by high freq's (reflectang)
* The net result is simultaneous dynamic lange compression \& contrast enhancement
* using a slights modified form of the Gaunsi an HpF yields to

$$
\begin{align*}
& \text { the Gaussian HPF yiplas to }\left(\gamma_{H}-\gamma_{L}\right)\left[1-e^{-C\left[D^{2}(u, v) \mid D_{0}^{2}\right]}\right] \tag{L}
\end{align*}
$$

IMAGE RESTORATION
5.1 A Model of Image degradation/Restoration process

* Restoration is the process of inverting a degradation using knowledge about its natule a model for
* Fig 5.1 below shows the degradation / restoration process.

$f(x, y)$ = original Image
$h(x, y)=$ degradation function H
$\eta(x, y)=$ additive noise teem.
$g(x, y)=$ degraded \& noisy image
$\eta(x, y)=$ degraded \& noisy image
$g(x, y)=$ estimate of the original image
$\hat{f}(x, y)=$ is restored image
* The objective of restoration process is to estimate $\hat{f}(x, y)$ from the degraded version $g(x, y)$, when some knowledge of degradation function ' H ' \& noise ' η ' is there.
* The degraded image $g(x, 4)$ can we mathemati-
- cally expressed as

$$
g(x, y)=h(x, y) * f(x, y)+\eta(x, y)
$$

spatial domain

$$
\text { * } \Rightarrow \text { convoln. }
$$

* An equivalent freq domain representation

$$
\begin{array}{ll}
G(u, v)=H(u, v) F(u, v)+N(u, v) \\
G(u, v)=F[g(x, u)] ; & F(u, v)=F[f(x, y)] \\
H(u, v)=F[h(x, y)] ; & N(u, v)=F[\eta(x, y)]
\end{array}
$$

Thus $F(u, v)=H^{-1}(u, v) \cdot[G(u, v)-N(u, v)]$
1 Restored Image can be obtained by eq (3).

* The problems in implementing this eqnis
(1) The noise N is unknown only the statistical properties of noise can be known.
(2) The operation H is singular or ill posed It is very difficult to estimate H
15.2 Noise models
* The principal sources of noise in digital image arise during image acquisition and /or transmission
* The performance of imaging sens on is affected by a valitty of factors such as environmental conditions during image acquisition \& dy the quality of the sensing element thenseler
* by when acquiring imacies with a CCD camera, light levels \& sensor temperature are major factors affecting the amount of noil in the resulting image.
* Images are corrupted dueling transmission due to interference in the channel used for trion. af. an image red using a wireless Now might be competed as a result of lightning or other atmospheric disturbance
5.2.1 Spatial 2 frequency properties of noise spatial \& freq characteristics of noise ale as follows:
(1) Noise is assumed to be 'white noise! if, fourier spectrum of noise is constame
(2) Noise is assumed to be independent in spatial domain. Noise is uncorrelated with Image i ie, there is no correlation bet' pixel value of image \& value of noise components
* The spatial noise descriptor is the statistical behaviour of the intensity values in the noise comp onent
* Noise intensity is considered as a random variable characterized fry a certain probability density function (DDF)
* Frequency properties refer to the free content of noise in the Fourier sense eff when the Fourier spectrum of noise is constant, white noise.
5.2 .2 sone important Noise Probability Density functions
Let us discuss the most common PDF's found in image processing application
(1) Gaussian noise:.
* Gaussian noise models (normal noise, are used frequently in practice.
* The PDF of a Gaussian random variable ' z ' is given $b y$
* The PDF of a Gaussian random variable, ' z ' is given by

$$
P(z)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(z-\bar{z})^{2}}{2 \sigma^{2}}}
$$

where
$z=$ intensity value,
$\bar{z}=$ mean (average) value of z. (we can us ely μ)
$p(z) \quad \sigma=$ standard deviation

* The plot of thin fun is shown in dis (a).
* when z is clesuile bye q, for of its value will be in the range $[(\bar{z}-\sigma),(\bar{z}+\sigma)]$ \& about 95% will be in the randal $[(\bar{z}-2 \sigma),(\bar{z}+2 \sigma)]$
* DFT of gaussian noise is another gaussian process. \therefore this property of gaussian noise makes it must ubtenly used noise model
* eft. where gaussian model is used ale electronic cats noise, sensor noise due to low illumination or high temp, poor illumination
(2) Rayleigh noise

* The PDF of Rayleigh noise is given by

$$
P(z)=\left\{\begin{array}{cc}
\frac{2}{b}(z-a) & e^{-(z-a)^{2}} \\
; & \text { for } z \geq a \\
0 ; & f<r z<9
\end{array}\right.
$$

* The mean 4 valiance of this density are given by

$$
\begin{align*}
& \bar{z}=a+\sqrt{\pi b / 4} \\
& 4 \sigma^{2}=\frac{b(4-\pi)}{4} \longrightarrow \tag{4}
\end{align*}
$$

* big (b) Shows the PDF of Rayleigh density
* rote that curve dust start from origin 4 is not symmetrical LRT centre of cure basic shape of
* The Rayleigh density is skewed to the right. $4 \therefore$ can be useful for approximating skewed histograms
(3) Erlang (Gamma) Noise

The PDF of Erlang noise is given $b y$

$$
p(z)=\left\{\begin{array}{cl}
\frac{a^{b} z-1}{(b-1)!} e^{-a z} ; & \text { for } z \geq 0 \tag{5}\\
0 ; & \text { for } z<0
\end{array},\right.
$$

$a \& b$ are the integers $a>0 \& b=$ treinteyer $!\Rightarrow$ factorial

* The mean \& varianc of this density are given by

$$
\begin{align*}
\bar{z} & =\frac{b}{a} \tag{6}\\
\& \sigma^{2} & =\frac{b}{a^{2}}
\end{align*}
$$

* eq (5) is referred to as the gamma density, strictly speaking this is correct only when the denominator is the gamma fun $\Gamma(b)$.
* When the denominator is as shown, the density is more appropriately called the Erlang density
(4) Exponential noise

The PDF of exponential noise is giuendy

$$
p(z)=\left\{\begin{array}{cl}
a e^{-a z} ; & \text { for } z \geq 0 \\
0 ; & \text { for } z<0 \\
0>0, & \text {,he mean }
\end{array}\right.
$$

Where $a>0$, The mean + variance of this density fun all

$$
\begin{align*}
& \bar{z}=\frac{1}{9} \tag{a}\\
& \sigma^{2}=\frac{1}{a^{2}}
\end{align*}
$$

this PPF is a special case of the Erlang PDF, with $b=1 \quad \&$ shown in bis (d)

B uniform noise

* The PDF of uniform noise is given by

$$
p(z)=\left\{\begin{array}{cc}
\frac{1}{b-a} ; & \text { if } a \leq z \leq b \\
0 ; & \text { othersik } \\
& \text { un }
\end{array}\right.
$$

* The mean of this density bun is giun bs

$$
\bar{z}=\frac{a+b}{2} \rightarrow 12
$$

4 its valiance by

$$
\begin{align*}
& \sigma^{2}=\frac{(b-a)^{2}}{12} \rightarrow \tag{13}\\
& \text { a reppers noise }
\end{align*}
$$

(b) Impulse (salt 4 pepper) noise

* The PDF of (bipolar) impulse noise is given dos

$$
p(z)= \begin{cases}P_{a} ; & \text { for } z=9 \tag{14}\\ P_{b} ; & \text { for } z=b \\ 0 ; & \text { other biff }\end{cases}
$$

y If $b>9$, intensity b will
appears as a light dot in the Image

* concessly, level a will appear like a dark dot
1 If either Pa_{a} or p_{b} is zero, the impulse noin is called unipolar
* If neither probability is zeno, If they are approximately equal, impulse noil value will resemble salt + Pepper granules randomly distributed over the Imam
* for this reason, bipolar impulse noise is also called as salt \& pepper noise
* पenclally a $+b$ values are saturated (vely high or very low value). resulting in + re impulses being white (Salt) \& negative impulses being black (pepper)
* If pa= of only Pb exists ie, called pepper noise as only black dots are visible as noise - Salt noise' as only whit h dots are visible on the image as noik
* Impulse noise occurs when quiche transition based on has a probability
* each pixel in an image being contaminated by i max of $p / 2$ (ocpC1) Jilt) or a lack dot 0 either white dot (salt) or and (paper)

320 Chapter 5 ili Image Restoration and Reconstruction

$\frac{\mathrm{a}}{\mathrm{b}}$

FIGURE 5.5
(a) Image corrupted by sinusoidal noise.
(b) Spectrum (each pair of conjugate impulses corresponds to one sine wave). (Original image courtesy of NASA.)

FIGURE 5.3 Test pattern used to illustrate the characteristics of the noise PDFs shown in Fig. 5.2.

 Pepper noise to the image in Fig. 5.3.
5.2. Reriodiu Noise

* Periodic noise in an image arises typically from electrical or electromechanical interference dulling image acquisition
* This is the only type of spatially dependent noise
* Periodic noise can be reduced significantly via freq domain filtering * A strong reriodicnoise can de seen in frequency domain as equi spaced dots at a particular radius around the centre (origin) of the spectrum
* Fores If the in age is severely corrupted by (spatial) sinusoidal noise of various
- The FT of a pure sinusoid is a pair of frequencia conjugate impulses located at the conjugate Hen's of the sine wave
* Thus if the amplitude of a sine ware in the spatial domain is strong, then we would expect to see a pair of impulse foreach sine wave in the spectrum.
5.2.4 Estimation of Noise parameter.
* The parameters of periodic noise are estimated by inspection of the Fourier spectrum of the in rage.
* periodic noise tends to produce Aeq spikes that often can be detected by visual
* Another approach is to attempt to infers analysis. the periodicity of noise components directly from the image, this is possible for simplistic cares.
* Automated analysis is possible in situations in which the noise spikes all either exceptionally pronounced or when knowledge is available about the general location of the freq components of the interference
* The parameters of noise $P D F$'s may be known partially from sensor specification but it is often required to estimate them f* for a particular imaging arrangement
\rightarrow If the imaging system is available, then one simple way to study the characterstics ob system noise is to capture, a set of images of "flat" environment and estimate the parameters of the PDF front small patches of reasonably constant background intensity.
* The simplest use of the data from the image $s t r$ 'ps is for calculating the wean \& Variance of intensity levels.
* Consider a strip (subinage) denoted by "S' \&
Let $P_{S}\left(z_{i}\right)_{;}$where $i=0,1,2 \ldots L-1$, denote the probability estimates (normalized histogram values) of the intensities of the pixel ins. where $L=\frac{n o}{-}$ of possible intensities in the entice image.
* The mean \& variance of the pixels is' can be calculated as

$$
\begin{aligned}
\bar{z} & =\sum_{i=0}^{L-1} z_{i} P_{S}\left(z_{i}\right)
\end{aligned} \quad \rightarrow 15
$$

* The shape of the histogram identifies the closet closes + PDF match
* If the shape is approximately Gaussian, then mean $\&$ variance ale need.
* for other shapes, mean 4 variance are used to solve for the palametess $a+b$ * for impulse noise, the heights of the peaks conesponding to blacle \& white pixels ane the estimates of $\mathrm{pa}+\mathrm{pb}$.

53 Restoration in the presence of Noise only - spatial filteling

* When only degradation percent in image is noise then

$$
\begin{align*}
g(x, y) & =f(x, y)+\eta(x, y) \tag{1}\\
+G(u, v) & =F(u, v)+N(u, v)
\end{align*}
$$

\rightarrow noise tell is unknown so subtracting them from $g(x, y)$ or $G(u, v)$ is,

$$
\begin{aligned}
& \text { em from } g(x, y) \text { or } G(x, y) \text { is not } 9
\end{aligned}
$$ realistic option.

* Thus spatial filtering is used when additice random noise is present

Noisy SH
Filteling \rightarrow Denoikd inane \hat{f}
mean filters
(i) Arithmetic mean filter

* simplest form of mean filter
* $s_{x y} \Rightarrow$ set of coordinates in a rectangular sub image window (neighborhood) of size $m \times n$, unteled at a point x, y.
* mean filter computes avg value of the corrupted image $g(x, y)$ in the area defined by $s_{x, y}$

$$
\begin{gathered}
* f^{\prime}(x, y)=\frac{1}{m n} \sum_{(x, t, y)} g(s, t) \longrightarrow \text { (1) }
\end{gathered}
$$

* such a filter smooths local variations in an image thus reducing noise 2 introducing blurring.
* This filter is well suited for random noise like Gaussian, uniform noise

Thus new value
at (x, y) in image $=$ mean $\{\mathrm{g}(\mathrm{s}, \mathrm{t})\}=\frac{1}{9}[30+10+20+10+250+25+20$ 6.12

$$
+25+3]=46.7 \approx 47
$$

30	10	20				
10	250	25				
20	25	30	\longrightarrow	x	x	\times
:---:	:---:	:---:				
x	$46.7 \approx 47$	\times				
\times	\times	\times				

FIGURE 6.12: Example of mean filtering

Example 6.2

Show effect of 3×3 mean filter on a simple image in fig 6.13 (a) and (c)

Solution:

0	0	0	0	0
0	0	0	1	1
0	0	1	1	1
0	0	1	20	1
0	0	1	1	1

(a)

$\xrightarrow{\text { Mean }}$| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | $1 / 9$ | $3 / 9$ | $5 / 9$ | |
| filter | | | | |
| | $2 / 9$ | $24 / 9$ | $27 / 9$ | |
| | $3 / 9$ | $25 / 9$ | $28 / 9$ | |
| | | | | |

(b)

b. Geometric Mean Filter

Restored image by a geometric mean filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\left[\prod_{(s, t) \in s_{n}} g(s, t)\right]^{1 / m n} \tag{6.20}
\end{equation*}
$$

Thus new value at (x, y) in image $6.15=\underset{s, t \in S x y}{\text { Geometric mean }[\mathrm{g}(\mathrm{s}, \mathrm{t})]}$

$$
\begin{aligned}
= & {[30 \times 10 \times 20 \times 10 \times 250 \times 25 \times 20} \\
& \times 25 \times 30] 1 / 81=1.436
\end{aligned}
$$

30	10	20
10	250	25
20	25	30

\longrightarrow| x | x | x |
| :---: | :---: | :---: |
| x | 1.436 | x |
| x | x | x |

FIGURE 6.15: Example of geometric mean filter
Geometric mean filter achieves less smoothing as compared to the arithmetic mean filters but it preserves more details.

c. Harmonic Mean Filter

Harmonic mean filtered image is given by,

$$
\begin{equation*}
\hat{f}(x, y)=\frac{m n}{\sum_{(s, t) \in s_{n}} \frac{1}{g(s, t)}} \tag{6.21}
\end{equation*}
$$

Thus new value at (x, y) in image $6.16=\underset{s, t \in S^{x}}{\text { Harmonic mean }[\mathrm{g}(\mathrm{s}, \mathrm{t})]}$

$$
=\frac{9}{\frac{1}{30}+\frac{1}{10}+\frac{1}{20}+\frac{1}{10}+\frac{1}{250}+\frac{1}{25}+\frac{1}{20}+\frac{1}{25}+\frac{1}{30}}
$$

30	10	20				
10	250	25				
20	25	30	$\xrightarrow{\text { Mean filter }} \boldsymbol{H}$	\times	\times	\times
:---:	:---:	:---:				
\times	4.36	\times				
\times	\times	\times				

FGURE 6.16: Example of Harmonic mean filter

492 Digitol Image Processing

Harmonic mean works well for salt noise and gaussian noise, but fails for pepper noike

d. Contra Harmonic Mean Filter

Restored image from contra harmonic filter is

$$
\begin{equation*}
\hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{y}} g(s, t)^{Q+1}}{\sum_{(s, t) \in S_{n}} g(s, t)^{Q}} \tag{6.22}
\end{equation*}
$$

Here, Q is the order of the filter. This filter reduces salt \& pepper (impulse) noise. For $Q>0$, it eliminatés pepper noise.
For $Q<0$, it eliminates salt noise.

$$
\text { For } Q=0, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{x}} g(s, t)^{1}}{\sum_{(s, t) \in S_{x y}} 1}=\frac{\sum_{(s, t) \in S_{x y}} g(s, t)^{1}}{m n}=\text { mean filter }
$$

Thus for $Q=0$, contra-harmonic filter becomes arithmetic mean filter.

$$
\text { For } \begin{aligned}
Q=-1, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{n}} g(s, t)^{0}}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} & =\frac{m n}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} \\
& =\text { Harmonic mean filter }
\end{aligned}
$$

Thus, for $Q=-1$, it becomes harmonic mean filter. Q has to be chosen properly. Wrong Q gives disastrous results.

Harmonic mean works well for salt noise and gaussian noise, but fails for pepper noive,

d. Contra Harmonic Mean Filter

Restored image from contra harmonic filter is

$$
\begin{equation*}
\hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{\eta}} g(s, t)^{Q+1}}{\sum_{(s, t) \in S_{\eta}} g(s, t)^{Q}} \tag{6.22}
\end{equation*}
$$

Here, Q is the order of the filter. This filter reduces salt \& pepper (impulse) noise. For $Q>0$, it eliminatés pepper noise.
For $Q<0$, it eliminates salt noise.

$$
\text { For } Q=0, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{n}} g(s, t)^{1}}{\sum_{(s, t) \in S_{n}} 1}=\frac{\sum_{(s, t) \in S_{\eta}} g(s, t)^{1}}{m n}=\text { mean filter }
$$

Thus for $Q=0$, contra-harmonic filter becomes arithmetic mean filter.

$$
\text { For } \begin{aligned}
& Q=-1, \hat{f}(x, y)=\frac{\sum_{(s, t) \in S_{n}} g(s, t)^{0}}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}}=\frac{m n}{\sum_{(s, t) \in S_{n}} \frac{1}{g(s, t)}} \\
&= \text { Harmonic mean filter }
\end{aligned}
$$

Thus, for $Q=-1$, it becomes harmonic mean filter. Q has to be chosen properly. Wrong Q gives disastrous results.

6.5.2 Order Statistics Filter

Order statistics filter are non-linear spatial filters. Its response is based on ordering the pixels contained in sub - image area. Filter is implemented by replacing the centre pixel value with the value determined by the ranking result. As shown in table 6.2 , four types of order statistics filters are discussed here.

a. Median Filter

Median filter replaces the pixel value by the median of the pixel values in the neighbourhood of the centre pixel (x, y). The filtered image is given by

$$
\begin{equation*}
\hat{f}(x, y)=\operatorname{mediax}_{(s, t) \in s_{n}}\{g(s, t)\} \tag{}
\end{equation*}
$$

Fig 6.17 shows the procedure of applying 3×3 median filter on an image. As impulse
${ }_{n} \mathrm{n}^{\text {oise }}$ appears as black (minimum) or white (maximum) dots, taking median effectively suppresses the noise. It is clear from example 6.3 , fig $6.18(\mathrm{a}, \mathrm{b})$ that if noise strength is low in noisy image, output is completely clean. But if noise strength is more (more number of noisy pixels in the image), output is not completely noise free as can be seen in fig $6.18(\mathrm{c}, \mathrm{d})$

Thus, median filter provides excellent results for salt and pepper noise with considerably less blurring than linear smoothing filter of the same size. These filters are very effective for both bipolar and unipolar noise. But, for higher noise strength, it affects clean pixels as well and a noticeable edge blurring exists after median filtering.

FIGURE 6.17: Example of median filtering

Example 6.3

Example 6.3 show the effect of 3×3 median filter on a simple image in fig 6.18 (a and c).

Solution

128	128	128	128	128
128	0	128	128	128
128	128	128	128	128
128	128	128	128	128
128	128	128	128	128

FIGURE 6.18: (a) Input image

494 Digital Image Processing
$\left.\begin{array}{|c|c|c|c|c|}\hline 128 & 128 & 128 & 0 & 128 \\ \hline 128 & 0 & 128 & 128 & 128 \\ \hline 0 & 0 & 255 & 255 & 255 \\ \hline 0 & 0 & 128 & 255 & 0 \\ \hline\end{array} \quad \begin{array}{c}\text { Median } \\ \text { filter }\end{array}\right)$

FIGURE 6.18: (c) Input image
FIGURE 6.18: (d) Outputimage

FIGURE 6.18: Example of median filter

FIGURE 6.19: (a) Original image

FIGURE 6.19: (c) Filtered image with mean filter

FIGURE 6.19: (b) Noisy image

FIGURE 6.19: (d) Filtered image with median filter

FIGURE 6.19: (a) Input image (b) noisy image, image filtered by (c) mean (d) Median filter

Matlab Ex 6.4

Explanation

Salt and pepper noise with density of 0.3 is added to an image. The noisy image $1 f_{q}$ 6.20 (a)) is filtered using $3 \times 3,5 \times 5$ and 7×7, median filter. The results in fig 6.20 b, c, d show that 3×3 median filter is unable to remove the noise completely as the noise density is high. But 5×5 and 7×7 median filters remove noise completely bur some distortions are seen specially in fig (d).

FIGURE 6.20: (a) Noisy image

FIGURE 6.20: (b) Filtered image with 3×3
median filter

FIGURE 6.20: (c) Filtered image with 5×5 median filter

FIGURE 6.20: (d) Filtered image with 7×7 median filter

FIGURE 6.20: (a) Noisy image, image filtered by median filter of size (b) 3×3 (c) 5×5 (d) 7×7

b. Max and Min Filter

The restored image from a max filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\max _{(s, t) \in S_{n}}\{g(s, t)\} \tag{6.23}
\end{equation*}
$$

$\begin{aligned} & \text { Thus new value at } \\ & (\mathrm{x}, \mathrm{y}) \text { in fig 6.21 }\end{aligned} \quad=\max _{\mathrm{s}, \mathrm{t} \in S_{\mathrm{xy}}}\{\mathrm{g}(\mathrm{s}, \mathrm{t})\} \quad=\max \{30,10,20,10,250,25,20,25,30$

$$
=250
$$

30	10	20
10	250	25
20	25	30

$\xrightarrow[\text { Max }]{\text { filter }}$| x | x | x |
| :--- | :--- | :--- |
| x | 250 | x |
| x | x | x |

FIGURE 6.21: Example of max filter

Example 6.3

Show the effect of 3×3 max on image in fig 6.22 (a)

Solution

128	128	128	128	128						
128	0	128	0	128						
128	128	0	128	128						
128	0	255	0	128						
128	128	128	128	128	$\xrightarrow[\text { Filter }]{ } \quad$					
:---	:---	:---	:---	:---						
	128	128	128							
	255	255	255							
	255	255	255							

(a) Input image
(b) Output image

FIGURE 6.22: Example of max filter
This filter is useful in finding the brightest points in an image, therefore it is effective against pepper noise. Problem occurs when both salt \& pepper noise is there and there are more noisy pixels. In this case, even non-noisy pixel values are also replaced by salt noise values. As it is clear from example 6.3, 128 pixel value is non noisy.
$0 \rightarrow$ pixel affected by pepper noise, $255 \rightarrow$ pixel affected by salt noise
After the application of filter in fig 6.22 (b), only the first row values are non-noist, other rows have noise values (255).

Image restored from a min filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\min _{(s, t) \in s_{y}}\{g(s, t)\} \tag{6.24}
\end{equation*}
$$

Thus new value at $=\min \{\mathrm{g}(\mathrm{s}, \mathrm{t})\}$
(x, y) in fig 6.23 ${ }_{s, t \in S_{r}} \quad=\min \{30,10,20,10,250,25,20,25,30$

$$
=10
$$

30	10	20
10	250	25
20	25	30

$\xrightarrow[\text { Filter }]{\min } \quad$| x | x | x |
| :--- | :--- | :--- |
| x | 10 | x |
| x | x | x |

FIGURE 6.23: Example of min filter

Example 6.4

Show the effect of $3 \times 3 \mathrm{~min}$ filter on image in fig 6.24 (a).

FIGURE 6.24: Example of min filter
In the above example $6.4,128$ pixel is non noisy value
$255 \rightarrow$ pixel affected by salt noise, $0 \rightarrow$ pixel affected by pepper noise
In the output Fig 6.24 (b) first row has non noisy pixel values, where as $2^{\text {nd }}$ and $3^{\text {rd }}$ row has pepper noise values a output.

This filter is useful in finding darkest points in an image, it is effective against only salt noise. The problem occurs when both salt and pepper noise is present in an the image, even non-noisy pixel values are replaced by pepper noise.

C. Midpoint Filter

This filter computes the mid point of maximum and minimum values of intensities.

$$
\begin{equation*}
\hat{f}(x, y)=\frac{1}{2}\left[\max _{(s, t) \in s_{\eta}}\{g(s, t)\}+\min _{(s, t) \in s_{v}}\{g(s, t)\}\right] \tag{6.25}
\end{equation*}
$$

The new value at (\mathbf{x}, y) in image in fig $6.25=\frac{1}{2}[\max \{g(s, t)\}+\min \{g(s, t)\}]$

$$
=\frac{1}{2}[250+10]=130
$$

30	10	20
10	250	25
20	25	30

Mid point

(a)

FiGURE 6.25: Example of mid point filter

This filter is a combination of order statistics and averaging. It works well for Gaussian uniform noise.

Example 6.5

Show the effect of 3×3 mid point filter on an image in fig 6.26 (a)

0	1	2	3	4
5	6	7	8	9
5	5	5	9	9
5	5	5	9	9
5	5	5	9	9

(a) Input image
mid point \longrightarrow filter

	3.5	3	5.5	
	6	7	7	
	5	7	8	

(b) Output image

FIGURE 6.26: Example of mid point filter

Salt and pepper noise is added to an input image shown in fig 6.27 (a). Median filter is implemented by ordfilt2 command by choosing 5 (center value in $3 \times 3=9$ pixels). Max filter is implemented by choosing $9^{\text {th }}$ (highest value in 9 pixel) and min filter is implemented by choosing 1 (minimum value in 9 pixels). Mid point filter is implemented by taking average of min and max filter values. As it is clear from the output (fig 6.27 (c)) that, median filter completely removes salt and pepper noise. But max filter fig (d) removes only pepper noise (black dots) but salt noise remains and same distortions in terms of salt noise is added in the output (fig d). Similarly, min filter removes only salt noise (white dots) completely but pepper noise remains and same distortions in terms of pepper noise is added in the output (fig e). In case of mid point filter, noise values and other pixel values are also replaced by average value(125). Therefore lot of grey pixels are seen in the image (fig f).

FIGURE 6.27: (a) Original image

FIGURE 6.27: (b) Noisy imgae

FIGURE 6.27: (c) Filtered image using median filter

FIGURE 6.27: (e) Filtered image using min filter

FIGURE 6.27: (d) Filtered image using max filter

FIGURE 6.27: (f) Filtered image using mid point filter

FIGURE 6.27: Original image (b) noisy image, filtered image using (c) median (d) max (o) minin (f) mid point filter

d. Alpha-trimmed Mean Filter

d. Alpha-trimmed Mean Filter
Let there be $\mathrm{m} \times \mathrm{n}$ pixels in neighbourhood S_{xy}. Remove $\mathrm{d} / 2$ lowest and $\mathrm{d} / 2$ highest glfl
level valued pixels. Number of remaining pixels are $(\mathrm{mn}-\mathrm{d})$ which are represented by $\mathrm{g}_{\mathrm{r}}(\mathrm{s}, \mathrm{t})$. Restored image by alpha - trimmed mean filter is given by

$$
\begin{equation*}
\hat{f}(x, y)=\frac{1}{m n-d} \sum_{(s, t) \in S_{r}} g_{r}(s, t) \tag{6.26}
\end{equation*}
$$

Here d can range from 0 to $\mathrm{mn}-1$.
For $\mathrm{d}=0$, alpha trimmed filter $=$ Arithmetic filter
For $\mathrm{d}=\frac{m n-1}{2}$ alpha trimmed filter $=$ median filter

30	10	20		
10	250	25		
20	25	30		alpha-trimmed mean
:---:				
filter				

| x | x | x |
| :--- | :--- | :--- | :--- |
| x | 23 | x |
| x | x | x |

| (a) Input image |
| :--- | :--- |
| (b) Output image |

FIGURE 6.28: Example of alpha-rimmed filter with $d=2$

Let $\mathrm{d}=2$, we remove $\frac{d}{2}=1 \mathrm{~min}$ value (10 in this case) and $\frac{d}{2}=1 \mathrm{max}$ value (250 in this case) and then the value at (x, y) in image in fig 6.28 (a) $=\frac{1}{(9-2)}$ $[30+10+20+25+20+25+30]=22.85 \approx 23$

Ford $=4$,remove $2 \min (10,10$ in thiscase $)$ and $2 \max (250,30$ in thiscase) valuesand
the new value at (x, y) in image fig $6.28(\mathrm{c})=\frac{1}{(9-4)}[30+20+25+20+25]=24$

30	10	20
10	250	25
20	25	30
(a) Input image		

\(\xrightarrow[\substack{alpha-trimmed mean

filter}]{\mathrm{d}=4}\)| x | x | x | |
| :--- | :--- | :--- | :---: |
| x | 24 | x | |
| x | x | x | |
| | | | |
| (b) Output image | | | |

FIGURE 6.28: Example of alpha-trimmed filter with $d=4$
This filter removes a combination of salt \& pepper and Gaussian noise.

Adaptive filters

* mean filters 4 order stastics filters arenot capable of distinquishing noise from pixel values.
* There filters replace all pinelvalues with mean/median which causes distortions
* Adaptive filters are capable of superior performance because its behaviours adapts to the change in characteristics of image area being filtered.
* This pres the complexity of the filter
(a) Adaptive Local Noise Reduction Filter
* This filter changes its action based on $\rho+a t i s t i c a l$ properties of the pixels in
* The simplest statistical mearule of a region $s_{x y}$. random variables are its mean $\&$ variance. These are the quantities closely * Tested to appearance of an image
* mean giles a measure of avg intensity in the region orel which wean is
2 * Variance gives a measure of contrast computed
* These 2 palametes ale chosen to change the behavior of adaptive local noise
* filter is operated on a local region Say.
* The response of the filter at any point $(x, 4)$ on which the region is entered is to be based on 4 quantiticy
(1) $g(x, y) \rightarrow$ value of the noisy image at (x, y)
(ii) $\sigma_{n}^{2} \Rightarrow$ valiance of noise commenting $f(x, y)$ to form $g(x, y)$
(iii) $m_{L}=$ Local mean of the pixels in say.
(iv) σ_{L}^{2} : Local valiance of the pixels in Say.
* Behaviour of noise seducing filter should de as follows
(1) If $\sigma_{n}{ }^{2}=0$; the filter should setuen simply the value of $g(x, y)$. [in case of nonoise]

$$
\therefore g(x, y)=\hat{f}(x, y) \text {. }
$$

$(2)+$ If the local variance is high relative to Vn^{2}, the filter should return a value close to $g(x, y)$.

* A high variance typically is associated with edges \& these should of preserved.
(3) If the 2 variances ale equal, we want the biter to return the arithmetic mean value of the pixels in say.
* This condition occurs when the local area has the same properties as the overallimaqe \& the local noise is to be reduced by averaging.
radaptive filter is given by

$$
\begin{aligned}
& \text { ptive filter is given wy } \\
& \hat{f}(x, y)=g(x, y)-\frac{\sigma_{n}^{2}}{\sigma_{L}^{2}}\left[\begin{array}{r}
g(x, y)- \\
m_{L}
\end{array}\right] \\
& \sigma_{n}^{2} \text {. is the only quantity that }
\end{aligned}
$$

$\sigma_{n}^{2}=$ is the only quantity that needs to be known or estimated is the variance of the overall noise $\sigma_{n}{ }^{2}$.

* The other parameters are computed from the pixels in Soy, at each location $(x, 4)$ on which the filter window is centered.
- $\sigma_{L}^{2} \& M L$ is estimated for the selected area
(1) in case of no noise $\sigma^{2} n=0$, then eq (1) becours

$$
\hat{f}(x, y)=g(x, y)
$$

(2) Incare of edqus $\sigma_{n}^{2}<\sigma_{L}^{2}$

Then $\frac{\sigma n^{2}}{\sigma L^{2}} \approx 0$
substuting this in eq (1)

$$
\begin{aligned}
\hat{f}(x, y) & =g(s, t)-o[g(s, t)-n,] \\
& \simeq g(s, t)
\end{aligned}
$$

(3) In case of presence of noil

Then eq (1)
If $\sigma_{n}^{2}=\sigma_{L}^{2}$ then $\frac{\sigma_{n}^{2}}{\sigma_{L}^{2}}=1$

$$
\begin{aligned}
& \hat{f}(x, y)=g(\rho, t)-\left[g(s, t)-m_{L}\right] \\
& \hat{f}(x, y)=m_{L}
\end{aligned}
$$

* Adaptive filter achieves approximately the same performance in noise reduction as the mean filter, but introduces less blurring than the mean filter.
* Thus adpative filter yields considerably better results in overall Jerformance at the price of filter complexity
* If the noise valiance is not estimated correctly, filter gives undesirable results
* If estimated valiance value is too low as compared to actual valiance, noise correction will be smaller than it should bl

II the estimate is too high, the noise correction is large \& op image loose dynamic sane
(b) Adaptive median filter,

* median filter performs well if the spatial density of the impulse noise is not large is, isipulse noise with smaller propability $\left(\mathrm{Pa}_{\mathrm{a}}+\mathrm{P}_{\mathrm{B}}<0.2\right)$.
* Adaptive median filtering can handle impulse noise with probabilities larger than these
* Additional benefit of the adaptiremean filter is it seeks to preserve detail while smoothing nonimpulse noise.
* main objective of the adaptive median filter is
* TO remove salt \& peper (impulse) noik
* To smoothen noise ores Brothel than impulse noil
* To reduce distortion of thinning \& thickening of edges.
* adapitike median filter worles in a rectangular window area $\mathrm{Sp}_{4} y$ like other filters

Chapter 5 Image Restoration and Reconstruction

a b c d

 FIGURE 5.13(a) Image corrupted by additive Gaussian noise of zero mean and variance 1000 .
(b) Result of arithmetic mean filtering.
(c) Result of geometric mean filtering.
(d) Result of adaptive noise reduction filtering. All filters were of size 7×7.

* unlike other filters, the adaptive mean median filter changes (increases) the size of $S_{x y}$ duling filter operation depending on certain conditions.
* Olp of the filter is a single value used to replace the value of the pixel at (x, y), the point on which the window $S_{x, y}$ is entered at a given time
* variabus used in this pelgonthm are
$s_{x y}$ = rectangular window whose size ply duling orelation of adaptive filter centered at (x, y)
Zmin $=$ min grey level value in $5 x y$
$I_{\text {max }}$ - max gley level value in $5 x y$
$z_{\text {med }}=$ median of grey values in $S x_{1} y$ $z_{x y}=$ grey level at $(x, 4)$
$S_{\max }=$ max allowed size say.
* In the algorithm, $I_{\text {min }}$ \& $I_{m a x}$ ale considered to be "impulse like" min

Algorithm of Adaptive median filter
Stage A :

$$
\left.\begin{array}{l}
A_{1}=Z_{\text {med }}-Z_{\text {min }} \\
A_{2}=Z_{\text {med }}-Z_{\text {max }}
\end{array}\right\} \text { (or) } \begin{aligned}
& \text { If } \\
& Z_{\text {min }}<Z_{\text {med }}<z_{\text {max }}
\end{aligned}
$$

If $A_{1}>0$ AND $A_{2}<0$ go to stage B
ewe increase the window size
If windowsize $\leq S_{\text {max }}$ repeat stage else output $=Z_{\text {med }}$.

Stage B', -

$$
\begin{aligned}
& B_{1}=Z_{x y}-Z_{\text {min }} \\
& B_{2}=Z_{x y}-Z_{\text {max }}
\end{aligned}
$$

if $B_{1}>\dot{0}$ AND $B 2<0,0 / p Z_{x y}\left[\begin{array}{c}d_{0} \\ n+4\end{array}\right]$ else output Zed now
file.]

* Explanation , the mechanics of this algorithm, the kep is to keep in mind that it has 3 main purpose.
-to remove salt \& peper (impulse) noile
- to provide smoothing of other noise that maynot be impulsive
Toto reduce distortion such as sideling excessive thinning or thickening of object boundaries
* The values $Z_{\text {min }}$ \& $Z_{\text {max }}$ are considered to be impulse -like noise component [$Z_{\text {min }}=$ pepernoise $\quad Z_{\text {max }}:$ saltnoise]
* $Z_{x y}=$ pixel value which is to be filtered.
* If Zxy is either salt noise or pepper noise, it should be replaced by median value
\rightarrow In the legion Soy, centered at (x, y) find the median value Kneed.
* Stage A checks is Z med is impulse or not.
* Stage A: If Z med \neq impulse, then go to stage B. In stage B, we check if $z_{x y}$ is impulse or not
- $\frac{\rho+a_{u} \beta}{\text { }}$. If $z_{x y} \neq \operatorname{mpulse}$, then there is no need to filter \& 0 lp value is fame as Zxy_{x}

$$
\text { If } \begin{aligned}
Z_{x y}=\text { impulse }\left(z_{x y}\right. & =z_{\text {min }} 11 \\
z_{x u} & \left.=z_{\text {max }}\right),
\end{aligned}
$$

then olp = median value. (which is not noisy (hocked at staqeA).
\rightarrow thus here we are ensusing α inn!.
(1) In case of non noisy pixel \Rightarrow no filter action should take place, olp= $z_{x y}$
(2) In case $z_{x y}$ is noisy, then it should de replaced by a non-noisy median value (If it is noisty stage A takes call).

* In case, the $1^{\text {At }}$ statement in stage A fail, then Zed is either salt noise or peppernois, then in this case Zed canvit he used to replace a noisy pixel $z x y$ at
* In stage B we ensure that median us ρ rage B. never a noisy value
* TO do this size of window is ased $4 Z_{\text {med }}$ is tested ag a in for $z_{\text {min }}<Z_{\text {mud }}$ \angle Z max
If the condn is true, we go to stage I ese again size of window ' s ' is ped fill it leaches Smax.
* If max limits of window is reached 2 still zed is noisy then olp $=Z_{x y}$ ur e don't filter Zany 2 of P is not zoomed which is also noisy
x every time o/p is qenelated, window shifts 4 algorithm is reinitialized
* Advantage of this filter
(\$ only a noisy pixel is filtered
[b if filtering is done, we make sure that the median values is not noise

a b c
FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_{a}=P_{b}=0.25$. (b) Result of filtering with a 7×7 median filter. (c) Result of adaptive median filtering with ${ }_{S_{\max }}=7$.

Module 4

Chapter 9: Morphological Image Processing
 (Digital Image Processing - Gonzalez/Woods)

Chapter 10: image segmentation

Syllabus

Morphological Image Processing :

- Preliminaries,
- Dilation and Erosion
- opening and closing
* the Hit- or-Miss Transformation
* some basics Morphological Algorithm

Ch9: 9.1 to 9.5
Image segmentation :

* Fundamentals, point, line and edge detection, detection of isolated point, line detection edge models, basic edge detection
- [10.1,10.2.2 to 10.2.5]

9.1 Preliminaries

\checkmark "Morphology" - a branch in biology that deals with the form and structure of animals and plants.
\checkmark "Mathematical Morphology" - as a tool for extracting image components, that are useful in the representation and description of region shape.
\checkmark The language of mathematical morphology is - Set theory.
\checkmark Morphology offers a unified and powerful approach to numerous image processing problems.
\checkmark Sets in mathematical morphology represents objects in an image.
\checkmark For example, the set of all white pixels in a binary image is a complete morphological description of the image.

Preliminaries

\checkmark In binary images, the set elements are members of the 2-D integer space Z^{2}. where each element (x, y) is a coordinate of a black (or white) pixel in the image.
\checkmark Gray scale digital images can be represented as sets whose components are in Z^{3}.
\checkmark In this case two components of each elements of the set refers to the coordinates of a pixel and the third corresponds to its discrete intensity values.
\checkmark Sets in higher dimensional spaces can contain other images attributes such as color and time varying components.

Basic Concepts in Set Theory

- Subset $A \subseteq B$
- Union A U B
- Intersection

$$
A \cap B
$$

disjoint / mutually exclusive $A \cap B=\emptyset$

- Complement $\quad A^{c} \equiv\{w \mid w \notin A\}$
- Difference

$$
A-B \equiv\{w \mid w \in A, w \notin B\}=A \cap B^{c}
$$

Logic Operations Involving Binary Pixels and Images

- The principal logic operations used in image processing are: AND, OR, NOT (COMPLEMENT).
- These operations are functionally complete.
- Logic operations are preformed on a pixel by pixel basis between corresponding pixels (bitwise).
- Other important logic operations :

XOR (exclusive OR), NAND (NOT-AND)

- Logic operations are just a private case for a binary set operations, such : AND - Intersection, OR - Union, NOT-Complement.

Reflection and Translation

- Reflection

The reflection of a set B, denoted \hat{B} is defined as

$$
\widehat{\mathrm{B}}=\{w \mid w=-b, \text { for } b \in B\}
$$

If B is a set of pixels (2-D points) representing an object in an image, the \hat{B} is simply the set of points in B whose (x, y) coordinates have been replaced by (-x,-y).

Example: Reflection and Translation

a b c
FIGURE 9.1
(a) A set, (b) its reflection, and (c) its translation by z.

- Translation
\checkmark The Translation of a set B by point $z=\left(z_{1}, z_{2}\right)$ denoted by $(B)_{z}$ is defined as

$$
(B)_{z}=\{c \mid c=b+z, \text { for } b \in B\}
$$

\checkmark If B is the set of pixels representing an object in an image, then $(B)_{z}$ is the set of points in B whose (x, y) coordinates have been replaced by $(x+z 1, y+z 2)$

Structure elements (SEs)

- Set reflection and translation are employed extensively in morphology to formulate operations based on so called structuring elements (SEs) : small set or sub images used to probe am image under study for properties of interest.

Examples: Structuring Elements (1)

Examples: Structuring Elements (2)

Accommodate the entire structuring elements when its origin is on the border of the original set A

Origin of B visits every element of A

At each location of the origin of B, if B is completely contained in A , then the location is a member of the new set, otherwise it is not a member of the new set.

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring element. (c) The set padded with background elements to form a rectangular array and provide a background border. (d) Structuring element as a rectangular array. (e) Set processed by the structuring element.

9.2 Erosion and Dilation

\checkmark These two operations are fundamental to morphological processing.

9.21. Erosion

With A and B as sets in Z^{2}, the erosion of A by B is denoted by $A B$,

$$
\text { is defined as } A \bigcirc B=\left\{z \mid(B)_{Z} \subseteq A\right\}
$$

In words, this equation indicates that the erosion of A by B is the set of all points z such that B , translated by z , is contained in A .

We can express erosion in the following equivalent form :

$$
A \ominus B=\left\{z \mid(B)_{Z} \cap A^{c}=\varnothing\right\}
$$

Example for Erosion

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

Example for Erosion

Input image

Structuring Element

Output Image

Example for Erosion

Input image

1	0	0	0	1	1	1	0	1	1

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

Example for Erosion

Input image

Structuring Element

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

Example for Erosion

Input image

Structuring Element

Output Image

Example for Erosion

9.2.2 Erosion - Example 1

FIGURE 9.6 (a) Set A. (b) Square structuring clement. (c) Erosion of A by B, shown shaded

9.2.2 Erosion - Example 2

(a) Set A. (d) Elongated structuring element. (e) Erosion of A using this element.

The erosion shrinks or thins objects in a binary image.
\checkmark We can view erosion as a morphological filtering operation in which image details smaller than the structuring element are filtered from the image.

Dilation:

- Dilation is used for expanding an element A by using structuring element B
- With A \& B as sets in Z^{2} Dilation of A by B and is defined by the following equation:

$$
A \oplus B=\left\{Z \mid(\widehat{B})_{Z} \cap A \neq \emptyset\right\} \quad \cdots
$$

- This equation is based on reflecting B about its origin and shifting this reflection by z .
- The dilation of A by B is the set of all displacements z , such that \hat{B} and A overlap by at least one element.
- Based on this interpretation the equation of (9.2-1) can be rewritten as:

$$
A \oplus B=\{z \mid[(\hat{B}) Z \cap A] \subset A\} \quad-----9.2 .4
$$

\checkmark We assume that B is a structuring element and A is the set to be dilated.

- Structuring element B is viewed as a convolution mask.
- The basic process of flipping (rotating) B about its origin and then successively displacing it so that it slides over a set (image)A.
- It is analogous to spatial convolution, however dilation is based on set operations and therefore is a nonlinear operation unlike convolution.

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

1	0	0	0	1	1	1	0	1	1

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

1	0	0	0	1	1	1	0	1	1

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

Example for Dilation

Input image

Structuring Element

Output Image

$\begin{array}{lll}\text { a } & \text { b } & \text { c } \\ \text { d } & e\end{array}$

FIGURE 9.6
(a) $\operatorname{Set} A$.
(b) Square structuring element (the dot denotes the origin).
(c) Dilation of A
by B, shown shaded.
(d) Elongated structuring element. (e) Dilation of A using this element. The dotted border in (c) and (e) is the boundary of set A, shown only for reference

9.2.1 Dilation - Example 1

abc
FIGURE 9.4
(a) $\operatorname{Set} A$.
(b) Square structuring element (dot is the center).
(c) Dilation of A by B, shown

9.2.1 Dilation - Example 2

a de
(d) Elongated structuring element.
(e) Dilation of A using this element.

One of the simplest applications of dilation is for bridging gaps.

- Fig below shows the same image with broken characters.
- The maximum length of the breaks is known to be two pixels.
- Instead of shading, we used 1s to denote the elements of SE and 0's for background, because, SE is now being treated as a sub image and not a graphic.

Examples of Dilation (2)

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the y 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the yerar 2000.

FIGURE 9.7
(a) Sample text of poor resolution with broken characters (see magnified view).
(b) Structuring element.
(c) Dilation of (a) by (b). Broken segments were joined.

Duality between dilation and

 erosion- Dilation and erosion are duals of each other with respect to set complementation and reflection. That is,

$$
\begin{aligned}
& (A \ominus B)^{\mathrm{c}}=A^{c} \oplus \hat{B} \quad-------9.2-5 \\
& (\mathrm{~A} \oplus \mathrm{~B})^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \oplus \hat{B} \\
& \hline------9.2-6
\end{aligned}
$$

- Eq 9.2-5 indicated that erosion of $\mathrm{A} \& \mathrm{~B}$ is the complement of dilation of A^{c} by \widehat{B} and viceversa

Dilation and erosion are duals

Starting with definition of erosion

$$
\begin{aligned}
(A \ominus B)^{c} & =\left\{z \mid(B)_{z} \subseteq A\right\}^{c} \\
& =\left\{z \mid(B)_{z} \cap A^{c}=\varnothing\right\}^{c} \\
A \neq \varnothing\} & =\left\{z \mid(B)_{z} \cap A^{c} \neq \varnothing\right\} \\
& =A^{c} \oplus \hat{B}
\end{aligned}
$$

Application of erosion: eliminate

irrelevant detail

Squares of size 1,3,5,7,9,15 pels

original image

Erode with
13×13 square
dilation

One of the simplest uses of erosion is for eliminating irrelevant details (in terms of size) from a binary image.

- Dilation adds pixels to the boundaries of an object.
- Erosion removes pixels on object boundaries.
- The number of pixels added or removed from the objects in an image depends on the size and shape of the structuring elements used to process the image.

Applications:

- Dilation : for bridging gaps in an image.
- Erosion: eliminating unwanted detail in an image.

	0	0	0	0	0	0				fully match : 1
	0	0	1	1	0	0		1	2	partially match :1
A=	0	1	1	1	1	0	$B=$	(1)	3	no match :0
	0	0	0	1	1	0		1		
	0	0	0	0	0	0				
	A Dilation B						dilation			
	0	0	1	1	0	0				
	0	1	1	1	1	0				
	0	1	1	1	1	0				
	0	1	1	1	1	0				
	0	0	1	1	0	0				

erosion	
1	fully match : 1
2	partially match :0
3	no match :0

Links to refer

- https://www.youtube.com/playlist?list... for problems refer problem the following link
- https://www.youtube.com/watch?v=uMfoOP2Emxs
- https://www.youtube.com/watch?v=fiSkqmlbQao
- https://www.youtube.com/watch?v=T8uWZXbg2AU
- https://www.youtube.com/watch?v=2LAooUuiljQ
- C:\Users\admin\Desktop\module4 DIP\Erosion
- C:\Users\admin\Desktop\module4 DIP\dilation

9.3 Opening And Closing

- Opening - smoothes the contour of an object, breaks narrow isthmuses \& eliminates thin protrusions.
- Closing - also tends to smooth sections of contours, but as opposed to opening it generally fuses narrow breaks and long thin gulfs, eliminates small holes and fills gaps in contours
- These operations are dual to each other
- These operations are can be applied few times, but has effect only once
- The opening of set A by structuring element B, denoted as $A 0 B$, is defined as

$$
A \circ B=(A \ominus B) \oplus B
$$

- Opening A by B is erosion of A by B followed by a dilation of the result by B.
- Similarly closing of set A by structuring element B is denoted by $A \bullet B$, is defined as

$$
A \cdot B=(A \oplus B) \ominus B
$$

- This means that closing of A by B is simply the dilation of A by B, followed by the erosion of the result by B.
- Opening \rightarrow Erosion followed by a dilation.
- Closing \rightarrow A dilation followed by an erosion.

Problem : Suppose two discrete functions are represented by the sequences $A=\{5,7,11,8,2,6,8,9,7,4,3\} \quad B=\{1,2,1\}$

		5	7	11	11 8	2	6	8	9	7	4	3	
1	1	2	1	x									
2		1	2	1	1								
3			1	2	21								
4				1	1 2	1							
5					1	2	1						
6						1	2	1					
7							1	2	1				
8								1	2	1			
9									1	2	1		
10										1	2	1	
11											1	1 2	1
	add	1,7,8											
Dilation	max: D	8	12	13	12	9	9	10	11	10	8	5	
	sub	1,3,6											
Erosion	min:E	3	4	6	61	0	1	5	6	3	2	1	

Opening $=\mathrm{A}$ o $\mathrm{B}=$ first perform erosion then on that result perform dilation : erosion result : $\{3,4,6,1,0,1,5,6,3,2,1\}$ on this perform dilation with B.

Closing $=\mathrm{A} \bullet \mathrm{B}=$ first perform dilation then on that result perform an erosion:
Dilation result : $\{8,12,13,12,9,9,10,11,10,8,5\}$ on this perform erosion with B

Find contour
Fill in contour
Smooth the contour of an image, breaks narrow isthmuses, eliminates thin protrusions

$$
A \circ B=\cup\left\{(B)_{z} \mid(B)_{z} \subseteq \mathrm{~A}\right\}
$$

a b c d
FIGURE 9.8 (a) Structuring element B "rolling" along the inner boundary of A (the dot indicates the origin of B). (b) Structuring element. (c) The heavy line is the outer boundary of the opening. (d) Complete opening (shaded). We did not shade A in (a) for clarity.

Use of opening and closing for morphological filtering

erosion

opening of A

dilation of the opening

1	1	1
1	1	1
1	1	1

closing of the opening

As in the case with dilation and erosion, opening and closing are duals of each other with respect to set complementation and reflection. That is,

$$
\begin{equation*}
(A \cdot B)^{c}=\left(A^{c} \circ \hat{B}\right) \tag{9.3-4}
\end{equation*}
$$

and

$$
\begin{equation*}
(A \circ B)^{c}=\left(A^{c} ¥ \hat{B}\right) \tag{9.3-5}
\end{equation*}
$$

We leave the proof of this result as an exercise (Problem 9.14).
The opening operation satisfies the following properties:
(a) $A \circ B$ is a subset (subimage) of A.
(b) If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$.
(c) $(A \circ B) \circ B=A \circ B$.

Similarly, the closing operation satisfies the following properties:
(a) A is a subset (subimage) of $A ¥ B$.
(b) If C is a subset of D, then $C ¥ B$ is a subset of $D ¥ B$.
(c) $(A ¥ B) ¥ B=A ¥ B$.

Note from condition (c) in both cases that multiple openings or closings of a set have no effect after the operator has been applied once.

Proof link https://www.youtube.com/watch?v=SccZvlDMcAk

9.4 The Hit-or-Miss Transformation

- A basic morphological tool for shape detection.
- Is used for template matching.
- The transformation involves two templates sets, B and (W-B) which are disjoint.
- Template B is used to match the foreground image while (W-B) is used to match the background of the image.
- The hit-or-miss transforms is the intersection of the erosion of the foreground with B and the erosion of the background with (W-B).
- The hit - or-miss transforms is defined as

$$
A \circledast B=(A \ominus D) \cap\left[A^{c} \ominus(W-D)\right]
$$

- The small window W is assumed to have at least one pixel , thicker than B .
- We can generalize the notation somewhere by letting $B=(B 1, B 2)$
- $B 1=B$ and $B 2=(W-B)$

$$
A \odot B=\left(A \ominus B_{1}\right) \cap\left(A^{c} \ominus B_{2}\right)
$$

Thus, set $A \oplus B$ contains all the (origin) points at which, simulatneously, B1 found a match ("hit") in A and $B 2$ found a match in A^{C}.
by uisng the defination pf set differences and dual relationship between erosion and dilation we can write the above equation as

$$
A \circledast B=\left(A \ominus B_{1}\right)-\left(A \oplus \hat{B}_{2}\right)
$$

Any of these three equations can be used and are called morphological Hit-ormiss transforms..

Fig. 10.38 Input image X, structuring element $B, W, W-B$

Fig. 10.39 Eroded image of X

- First we have to find the erosion of the input image X with the structuring element B.
- Find the complement of the input image X and then erode it with the structuring element (W-B).
- Now find the intersection of the images of the above two steps, this gives the hit-or-miss transformation of input image X .

FIGURE 9.12
(a) Set A. (b) A window, W, and the local background of D with respect to $W,(W-D)$.
(c) Complement of A. (d) Erosion of A by D.
(e) Erosion of A^{c} by $(W-D)$.
(f) Intersection of (d) and (e), showing the location of the origin of D, as desired. The dots indicate the origins of C, D, and E.

- The reason for using these kind of structuring element $B=\left(B_{1}, B_{2}\right)$ is based on an assumed definition that, two or more objects are distinct only if they are disjoint (disconnected) sets.
- In some applications, we may interested in detecting certain patterns (combinations) of 1's and o's. and not for detecting individual objects.
- In this case a background is not required.
and the hit-or-miss transform reduces to simple erosion.
- This simplified pattern detection scheme is used in some of the algorithms for - identifying characters within a text.

The input image and the structuring elements are shown in below fig. find the hit or mass transformation for the input image

Solution

Step 1 From the definition of hit-or-miss transformation, we have to find the erosion of the input
image with the structuring element B. The result of the crosion operation is shown below.

Srep 2 Next, find the erosion of the complement of the input image with the structuring element IV $-B$; we get the output image as shown below.

Θ

Step 3 From the result of steps 1 and 2, the hit-or-miss transformed input image is found from the intersection of the result of the image in steps 1 and 2. The resultant image is shown below.

9.5 Basic Morphological Algorithms

Some of the pratical uses of morphology:
1 - Boundary Extraction
2 - Region Filling
3 - Extraction of Connected Components
4 - Convex Hull
5 - Thinning
6 - Thickening
7 - Skeletons

9.5.1 Boundary Extraction

- First, erode A by B, then make set difference between A and the erosion
- The thickness of the contour depends on the size of constructing object - B

$$
\beta(A)=A-(A \ominus B)
$$

$$
\begin{aligned}
& Y=X-(X \oplus B) \\
& Y=(X \oplus B)-X \quad \text { or } \\
& Y=(X \oplus B)-(X \oplus B)
\end{aligned}
$$

B

$A \ominus B$

$\beta(A)$
a b
c d
FIGURE 9.13 (a) Set A. (b) Structuring element B. (c) A eroded by B. (d) Boundary, given by the set difference between A and its erosion.

9.5.2 Region Filling

- Region /hole filling is the process of "coloring in "a definite image area or region.
- Region may be defined at the pixel level or geometric level.
- at pixel level, we describe a region either in terms of the bounding pixels that outline it or as the totality of pixels that comprises it.
- In the first case, the region is called boundary-defined which is shown in fig below.
- The collection of algorithms used for such case are called as boundary filling algorithms.

The other type of region is called an interior define region and the accompanying algorithms are called as flood-fill algorithms.

At geometric level, each region is defined or enclosed by such abstract contouring elements as connected as lines and curves.
The region filling is mathematically represented as

$$
X_{k}=\left(X_{k-1} \oplus B\right) \cap . A^{\mathrm{c}} \quad k=1,2,3, \ldots
$$

B is a structuring element; A denotes a set containing a subset whose elements are 8 connected boundary points of region. k ----number of iterations

- beginning with a point inside the boundary, the objective is to fill the entire region with is, by iteratively processing dilation.
- Region filing is based on dilation, complementation and intersections.
- There are two ways to terminate the iteration of algorithm,
- If the region is filled, then stop the iteration or fix the number of iterations to fill in the region.

a b c
d e f
g h i
FIGURE 9.15 Hole filling. (a) Set A
(shown shaded).
(b) Complement
of A.
(c) Structuring element B.
(d) Initial point inside the boundary.
(e)-(h) Various
steps of
Eq. (9.5-2).
(i) Final result
[union of (a) and (h)].

$\circ \circ \%$ \circ \circ \circ

a b c

FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting point for the hole-filling algorithm). (b) Result of filling that region. (c) Result of filling all holes.

The input image and structuring elements are shown. Perform the region filing operation

(a)

(b)

(c)

Fig. 10.46 (a) Input image $A(b)$ Complement of input image (c) Structuring element B

Step1 : initially take X0 as shown below, now perform the dilation of X0 with the structuring element B . The resulting image is then intersected with the complement of the input image. This completes first iteration

Step 2 Now, the input to the second step is the result of the first iteration. The process performed in Step 1 is repeated in Step 2.

Step 3 The same process is repeated again but the input image to the third iteration is the output image of Step 2.

Step 4 The steps followed in steps 2 and 3 are repeated in Step 4 . The resulant image is shown derow.

Step 5 The input to Step 5 is the output image of Step 4. The process done in Step 4 is repeated in Step 5.

Step. 6 The imput to Step 6 is the output image of Step 5. The process done in Step 5 is reperated in Siep 6.

Srep 7 Now, we perform the union of the result obtained in Step 7 with the original input image to get

9.5.3 Extraction of Connected Components

- This algorithm extracts a component by selecting a point on a binary object A
- Works similar to region filling, but this time we use in the conjunction the object A, instead of it's complement

$$
X_{k}=\left(X_{k-1} \oplus B\right) \cap A
$$

FIGURE 9.17 Extracting connected components. (a) Structuring element. (b) Array containing a set with one connected component. (c) Initial array containing a 1 in the region of the connected component. (d)-(g) Various steps in the iteration of Eq. (9.5-3).

FIGURE 9.18
(a) X-ray image of chicken filet with bone fragments.
(b) Thresholded image. (c) Image eroded with a 5×5 structuring element of 1 s .
(d) Number of pixels in the connected components of (c).
(Image courtesy of NTB
Elektronische
Geraete GmbH, Diepholz,
Germany,
www.ntbxray.com.)

Connected component	No. of pixcls in connected comp
01	11
02	9
03	9
04	39
05	133
06	1
07	7
08	743
09	7
10	11
11	11
12	9
13	9
14	674
15	85

9.5.4 Convex Hull

- A is said to be convex if a straight line segment joining any two points in A lies entirely within A
- The convex hull H of set S is the smallest convex set containing S
- Convex deficiency is the set difference H-S
- Useful for object description
- This algorithm iteratively applying the hit-or-miss transform to A with the first of B element, unions it with A, and repeated with second element of B

$$
X_{k}^{i}=\left(X_{k-1} \circledast B^{i}\right) \cup A
$$

$C(A)$
$\mathbb{W} B^{1}$
$\% B^{2}$
$\$ B^{x}$
|||||| B^{4}

a b c d e f g h

FIGURE 9.19
(a) Structuring elements. (b) Set A. (c)-(f) Results of convergence with the structuring elements shown in (a). (g) Convex hull. (h) Convex hull showing the contribution of each structuring element.

- The convex Hull method consists of iteratively applying the hit-or-miss transforms to A with B^{1}
- When no further change occurs, , we perform the union with A and call the result D^{1}.
- The procedure is repeated for B^{2} applied to A with no change occurs ...and so on..
- The union of 4 resulting Bs constitute the convex hull of A.

$$
\begin{gathered}
Y_{k}^{\prime}=\left(H M\left(Y_{k-1}, B^{t}\right) \cup X\right) i=1,2,3,4 \text { and } k=1,2,3, \\
Y_{0}^{i}=X, \text { and let } D^{\prime}=Y_{\text {cony }}^{i}
\end{gathered}
$$

Fig. 10.47 Different structuring elements of convex hulf

X indicated don'tcare

Solution The step-by-step approach to the determination of the convex hull of the input image is givea below.
Step 1 The value of Y_{1}^{1} is determined using $Y_{1}^{1}=H M\left(Y_{0}^{1}, B^{\frac{1}{2}}\right) \cup X$.
$\operatorname{Step} 2$ To find $H M\left(Y_{0}^{1}, B^{1}\right)$

$$
H M\left(Y_{0}^{1}, B^{1}\right)=\left(Y_{0}^{1} \Theta B^{1}\right) \cap\left(\left(Y_{\theta}^{1}\right)^{c} \Theta\left(W-B^{1}\right)\right)
$$

From the above definition, we have to find $Y_{0}^{1} \Theta B^{1}$, the result of this operation is shown below.

θ

The next step is to find $\left(Y_{0}^{1}\right)^{c} \Theta\left(W-B^{1}\right)$. The result of $\left(Y_{0}^{1}\right)^{c} \Theta\left(W-B^{1}\right)$ is shawn below.

Θ

Then we find the intersection of above the results which is illustrated below.

$ก$

Step 3 The union of the input image with the result obtained in Step 2 will give the convex hull of the input image which is illustrated below.

U

9.5.5 Thinning

- The thinning of a set A by a structuring element B , can be defined by terms of the hit-and-miss transform:

$$
A \otimes B=A-(A \circledast B)=A \cap(A \circledast B)^{c}
$$

- A more useful expression for thinning A symmetrically is based on a sequence of structuring elements: $\{B\}=\left\{B^{1}, B^{2}, B^{3}, \ldots, B^{n}\right\}$
- Where B^{i} is a rotated version of B^{i-1}. Using this concept we define thinning by a sequence of structuring elements: $A \otimes\{B\}=\left(\left(\ldots\left(\left(A \otimes B^{1}\right) \otimes B^{2}\right) \ldots\right) \otimes B^{n}\right)$

The process is to thin by one pass with B^{1}, then thin the result with one pass with B^{2}, and so on until A is thinned with one pass with B^{n}.

- The entire process is repeated until no further changes occur.
- Each pass is preformed using the equation:

$$
A \otimes B=A-(A \circledast B)=A \cap(A \circledast B)^{c}
$$

Origin

A

$A_{3}=A_{2} \otimes B^{3}$

$A_{6}=A_{5} \otimes B^{6}$

$A_{8,5}=A_{8,4} \otimes B^{5}$

$A_{1}=A \otimes B^{1}$

$A_{4}=A_{3} \otimes B^{4}$

$A_{8}=A_{6} \otimes B^{7,8}$

$$
A_{8,6}=A_{8,5} \otimes B^{6}
$$

$A_{2}=A_{1} \otimes B^{2}$

$A_{5}=A_{4} \otimes B^{5}$

$$
A_{8,4}=A_{8} \otimes B^{1,2,3,4}
$$

$A_{8,6}$ converted to m-connectivity.

- Apply the thinning process to the image using the structuring element shown below

First, we find the eroded input image with the structuring element. The resulant image is shown below

Θ| \square |
| :--- |
| $x \cdot x$ |
| $x \mid$ |$=$

Sep? 2 Toperform the croded operation of the complement input image with the complement stuuturing tlement. The resultant mage is illustrated below:

θ

Step 3 To find the hith-or-miss transformation of the input image
The bit-ormitiss transformation is the in and we get the thinned original image. This is illustrated below.

Note Changing the structuring element will yield a different extent of the thinning operation.

9.5.6 Thickening

- Thickening is a morphological dual of thinning.
- Definition of thickening $A \odot B=A \cup(A \odot B)$.
- As in thinning, thickening can be defined as a sequential operation:

$$
A \odot\{B\}=\left(\left(\ldots\left(\left(A \odot B^{1}\right) \odot B^{2}\right) \ldots\right) \odot B^{n}\right)
$$

- the structuring elements used for thickening have the same form as in thinning, but with all 1's and o's interchanged.
- A separate algorithm for thickening is often used in practice, Instead the usual procedure is to thin the background of the set in question and then complement the result.
- In other words, to thicken a set A , we form $\mathrm{C}=\mathrm{A}^{\mathrm{c}}$, thin C and than form C^{c}.
- depending on the nature of A , this procedure may result in some disconnected points. Therefore thickening by this procedure usually require a simple post-processing step to remove disconnected points.

9.5.6 Thickening example preview

- We will notice in the next example 9.22(c) that the thinned background forms a boundary for the thickening process, this feature does not occur in the direct implementation of thickening
- This is one of the reasons for using background thinning to accomplish thickening.

9.5.6 Thickening example

a b
c d
e

FIGURE 9.22 (a) Set \boldsymbol{A}. (b) Complement of \boldsymbol{A}. (c) Result of thinning the complement of A. (d) Thickened set obtained by complementing (c). (e) Final result, with no disconnected points.

9.5.7 Skeleton

- The notion of a skeleton $S(A)$ of a set A is intuitively defined, we deduce from this figure that:
a) If z is a point of $\mathrm{S}(\mathrm{A})$ and (D) z is the largest disk centered in z and contained in A (one cannot find a larger disk that fulfils this terms) - this disk is called "maximum disk".
b) The disk (D)z touches the boundary of A at two or more different places.

9.5.7 Skeleton

- The skeleton of A is defined by terms of erosions and openings:

$$
S(A)=\bigcup_{k=0}^{K} S_{k}(A)
$$

with $S_{k}(A)=(A \ominus k B)-(A \ominus k B) \circ B$
Where B is the structuring element and $(A \ominus k B)$ indicates k successive erosions of A :

$$
(A \ominus k B)=(\ldots((A \ominus B) \ominus B) \ominus \ldots) \ominus B
$$

- k times, and K is the last iterative step before A erodes to an empty set, in other words: $K=\max \{k \mid(A \ominus k B) \neq \varnothing\}$
- in conclusion $S(A)$ can be obtained as the union of skeleton subsets $\mathrm{Sk}(\mathrm{A})$.

a	b
c	d

FIGURE 9.23
(a) Set A.
(b) Various positions of maximum disks with centers on the skeleton of A. (c) Another maximum disk on a different segment of the skeleton of A. (d) Complete skeleton.

9.5.7 Skeleton

- A can be also reconstructed from subsets $\mathrm{Sk}_{\mathrm{k}}(\mathrm{A})$ by using the equation:

$$
A=\bigcup_{k=0}^{K}\left(S_{k}(A) \oplus k B\right)
$$

- Where $\left(S_{k}(A) \oplus k B\right)$ denotes k successive dilations of $\mathrm{Sk}_{\mathrm{k}}(\mathrm{A})$ that is:

$$
\left(S_{k}(A) \oplus k B\right)=\left(\left(\ldots\left(\left(S_{k}(A) \oplus B\right) \oplus B\right) \oplus \ldots\right) \oplus B\right.
$$

9.5.8 Pruning

Syllabus

*Fundamentals, point, line and edge detection, detection of isolated point, line detection edge models, basic edge detection [$10.1,10.2 .2$ to 10.2.5]
> Image segmentation divides an image into regions that are connected and have some similarity within the region and some difference between adjacent regions.
> The goal is usually to find individual objects in an image.
> For the most part there are fundamentally two kinds of approaches to segmentation: discontinuity and similarity.

- Similarity may be due to pixel intensity, color or texture.
- Differences are sudden changes (discontinuities) in any of these, but especially sudden changes in intensity along a boundary line, which is called an edge.
> Segmentation algorithms are area oriented instead of pixel oriented.
$>$ The result of segmentation is the splitting up of image into connected areas.
$>$ Thus segmentation is concerned with dividing an image into meaning regions.
> Applications of image segmentation:
Medical Imaging, Satellite imaging , Movement detection ,License plate recognition ,Robot navigation ...etc

10.2 Point, line and Edge Detection

- Segmentation methods are based on detecting sharp , local changes in intensity.
- Three types of image features in which we are interested are \checkmark isolated points
\checkmark lines
and
\checkmark edges.
- Edge pixels are pixels at which intensity of an image function changes abruptly , and edges (edge segments) are set of connected edge pixels .
- Edge detectors are local image processing methods designed to detect edge pixels.
>A line may be viewed as an edge segment in which intensity of the background on either side of the line is either much higher or lower than intensity of the line pixels. Lines give rises to so called roof edges.
\Rightarrow An isolated point may be viewed as a line whose length and width are equal to one pixel.

10.2.1 Background

$>$ WKT the local changes in intensity can be detected using derivatives.
$>$ Derivatives of the digital function are defined in terms of these differences.
> First order derivatives:

1. must be nonzero in areas of constant intensity
2. must be non zero at the onset of an intensity step or ramp
3. must be nonzero at points along an intensity ramp.
$>$ Second order derivative :
1.must be zero in areas of constant intensity
4. must ne non zero at the onset and end of an intensity step or ramp
5. must be zero along intensity ramps
> Because we are dealing with digital quantities whose values are finite, the maximum possible intensity change is also fine and the shortest distance over which a change can occurs is between adjacent pixels.
$>$ We obtain an approximation to the first-order derivatives at point x of a onedimensional function $f(x)$ by expanding the function $f(x+\Delta x)$ into a Taylor series about x , letting $\Delta \mathrm{x}=1$, and keeping only the linear terms
$>$ The result is the digital dif

\checkmark We used a partial derivative here for consistency in notation when consider an image function of two $\operatorname{var}^{\partial f / \partial x=d f / d x}$, , at which time we will be dealing with partial derivatives along the two spatial axes.

$>$ Our interest is on the second derivative about point x ,
 exp1 $\frac{\partial^{2} f}{2}=f^{\prime \prime}(x)=f(x+1)+f(x-1)-2 f(x)$
$>$ The above two equations satisfy the conditions regarding derivatives of first and second order.
 COnSi ${ }_{\text {for }}$ for clarity). The image strip corresponds to the intensity profile, and the numbers in the
in previous modlboxes are the intensity values of the dots shown in the profile. The derivatives were
obtained using Eqs. (10.2-1) and (10.2-2).

- Summary the following can be concluded:
- 1. First order derivatives generally produce thicker edges in an image.
- 2. Second order derivatives have a stronger response to fine detail, such as thin lines, isolated points and noise.
- 3. second -order derivatives produce a double-edge response at ramp and step transitions in intensity.
- 4. the sign of the second derivative can be used to determine whether a transition into edge is from light to dark or dark to light.
$R \equiv w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{0} z_{9}=F w_{i} z_{i} \quad$ FIGURE 10.1 A
 a small mask over the imi kind of discontinuity to ls

w_{1}	w_{2}	w_{3}
w_{4}	w_{5}	w_{6}
w_{7}	w_{8}	w_{9}

10.2.2 Detection of isolated points

- Point detection should be based on second derivative

: $\nabla^{2} f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$

(10.2-4)
where the partials are obtained using Eq. (10.2-2):

$$
\begin{equation*}
\frac{\partial^{2} f(x, y)}{\partial x^{2}}=f(x+1, y)+f(x-1, y)-2 f(x, y) \tag{10.2-5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} f(x, y)}{\partial y^{2}}=f(x, y+1)+f(x, y-1)-2 f(x, y) \tag{10.2-6}
\end{equation*}
$$

The Laplacian is then

$$
\begin{aligned}
\nabla^{2} f(x, y)= & f(x+1, y)+f(x-1, y)+f(x, y+1) \\
& +f(x, y-1)-4 f(x, y)
\end{aligned}
$$

- Using Laplacian mask in below figıo.4, we say that the point has been detected as the location (x, y) on which the mask is centered, if the absolute value of the response of the mask
- Such a po others are

if $|R(x, y)|$
otherwise hold. e and all ry image.

1	1	1
1	-8	1
1	1	1

a
b c d
FIGURE 10.4
(a) Point detection
(Laplacian) mask.
(b) X-ray image of turbine blade with a porosity. The porosity contains a single black pixel.
(c) Result of convolving the mask with the image. (d) Result of using Eq. (10.2-8) showing a single point (the point was enlarged to make it easier to see). (Original image courtesy of X-TEK Systems, Ltd.)

10.2.3 line detection

$>$ Next level of complexity is line detection.
$>$ For line detection we can expect second derivatives to result in a stronger response and to produce thinner lines than first derivatives.
$>$ We can use the same laplacian mask shown above in fig 10.4(a) for line detection keeping in mind that the double line effect of the second derivative must be handled properly.
$>$ This is illustrated in below example.

a b
c d
FIGURE 10.5
(a) Original image.
(b) Laplacian image; the magnified section shows the positive/negative double-line effect characteristic of the Laplacian.
(c) Absolute value of the Laplacian.
(d) Positive values of the Laplacian.

- The laplacian detector in fig 10.4, is isotropic, so its response is independent of direction,

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).

- Suppose that an image with constant background and containing various lines (oriented at $\mathrm{o}^{\circ}, \pm 45$ and 90) is filtered with the first mask .
- The maximum responses would occur at image locations in which a horizontal line passed through the middle of the row. The second mask responds best to lines oriented at +45 . The third mask to vertical lines and forth to -45 .

a b
c d
e f
FIGURE 10.7
(a) Image of a wire-bond
template.
(b) Result of processing with the $+45^{\circ}$ line detector mask in Fig. 10.6.
(c) Zoomed view of the top left
region of (b).
(d) Zoomed view
of the bottom
right region of
(b). (e) The image in (b) with all negative values set to zero. (f) All points (in white)
whose values
satisfied the
condition $g \geq T$,
where g is the
image in (e). (The points in (f) were enlarged to make them easier to see.)

10.2.4 Edge Models

- Edge detection is the approach used most frequently for segmentation images based on abrupt (local) changes in intensity.
- Edge models are classified accordingly to their intensity profiles.
- A step edge : involves a transition between two intensity

> In practice, digital images have edges that are blurred and noisy, with the degree of blurring determined principally by limitations in the focusing mechanisms (eg. Lenses in the case of optical image) and the noise level determined principally by the electronic components of the image system.
$>$ In such cases, edges are closely modeled as having an intensity ramp profile . The slope of the ramp is proportional to the degree of blurring in the edges.
$>$ In this model, we no longer have thin(1 pixel thick) path, instead, an edge point now is any point contained in the ramp and the edge segment would then be a set of such points that are connected.
$>$ The third model of an edge is so called - roof ed in fig above.
$>$ Two nearby ramps edges in a line structure calle
$>$ Basically two ways of roof convex roof edge show
$>$ Concave roof edge

FIGURE 10.9 A 1508×1970 image showing (zoomed) actual ramp (bottom, left), step (top, right), and roof edge profiles. The profiles are from dark to light, in the areas indicated by the short line segments shown in the small circles. The ramp and "step" profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels. (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

a b
FIGURE 10.10
(a) Two regions of constant intensity separated by an ideal vertical ramp edge.
(b) Detail near the edge, showing a horizontal intensity profile, together with its first and second derivatives.

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by random Gaussian noise of mean 0 and $\sigma=0.0,0.1,1.0$, and 10.0 , respectively. Second column: first-derivative images and gray-level profiles. Third column: second-derivative images and gray-level profiles.

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by random Gaussian noise of mean 0 and $\sigma=0.0,0.1,1.0$, and 10.0 , respectively. Second column: first-derivative images and gray-level profiles. Third column: second-derivative images and gray-level profiles.

- Three fundamental steps performed in edge detection
- 1. Image smoothing for noise reduction 2. detection of edge points
- 3. edge localization
- 10.2.5 basic edge detection
- Detecting changes in intensity for the purpose of finding the edges can be accomplished using first or second order derivatives.
- The image gradient anditsproporties
- First-order derinatives: ${ }^{x}=\frac{\partial}{\partial x}$
- The gradient of an n(GGge $f(x, y)\left[\frac{\partial f}{\partial y}\right.$ - $\operatorname{Grad}(f)=$ cation (x, y) is defined as the vector:

The magnitude of this vector $\nabla f=\operatorname{mag}(\nabla \mathbf{f})=\left[G_{x}^{2}+G_{y}^{2}\right]^{7 / 2}$

The direction of this vector:

$$
\alpha(x, y)=\tan ^{-1}\left(\frac{G_{x}}{G_{y}}\right)
$$

- Gradient operators: obtaining gradient of an image requires nommertina tho partial derivatives of
$\mathrm{f} / \mathrm{\partial y}$

$$
\begin{aligned}
& g_{x}=\frac{\partial f(x, y)}{\partial x}=f(x+1, y)-f(x, y) \\
& g_{y}=\frac{\partial f(x, y)}{\partial y}=f(x, y+1)-f(x, y)
\end{aligned}
$$

Detection of Discontinuities

Gradient Operators

Roberts cross-gradient operators

-1	0	0	-1
0	1	1	0

Prewitt operators	-1	-1	-1	-1	0	1
	0	0	0	-1	0	1
	1	1	1	-1	0	1
	Prewitt					
	-1	-2	-1	-1	0	1
Sobel operators	0	0	0	-2	0	2
	1	2	1	-1	0	1
	Sobel					

$$
\begin{aligned}
& g_{x}=\frac{\partial f}{\partial x}=\left(z_{9}-z_{5}\right) \\
& g_{y}=\frac{\partial f}{\partial y}=\left(z_{8}-z_{6}\right)
\end{aligned}
$$

Roberts operator

$$
\begin{aligned}
& g_{x}=\frac{\partial f}{\partial x}=\left(z_{7}+z_{8}+z_{9}\right)-\left(z_{1}+z_{2}+z_{3}\right) \\
& g_{y}=\frac{\partial f}{\partial y}=\left(z_{3}+z_{6}+z_{9}\right)-\left(z_{1}+z_{4}+z_{7}\right)
\end{aligned}
$$

$$
g_{x}=\frac{\partial f}{\partial x}=\left(z_{7}+2 z_{8}+z_{9}\right)-\left(z_{1}+2 z_{2}+z_{3}\right)
$$

$$
g_{y}=\frac{\partial f}{\partial y}=\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}+z_{7}\right)
$$

Prewitt operator
\checkmark Prewitt masks are simpler to implement than sobel masks .
\checkmark The sobel masks have better noise suppression (smoothing characteristics which makes them preferable.

Prewitt masks for detecting diagonal edges

0	1	1
-1	0	1
-1	-1	0
-1	-1	0
0	1	1

Prewitt

Sobel masks for detecting diagonal edges

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

Sobel
FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.

Detection of Discontinuities
 Gradient Operators: Example

a b
 c d

FIGURE 10.10
(a) Original image. (b) $\left|G_{x}\right|$, component of the gradient in the x-direction. (c) $\left|G_{y}\right|$,
component in the y-direction. (d) Gradient
image, $\left|G_{x}\right|+\left|G_{y}\right|$.
$\nabla f \approx\left|G_{x}\right|+\left|G_{y}\right|$

Detection of Discontinuities Gradient Operators: Example

a b
c d
FIGURE 10.11
Same sequence as in Fig. 10.10, but with the original image smoothed with a 5×5 averaging filter.

Detection of Discontinuities
 Gradient Operators: Example

a b
FIGURE 10.12
Diagonal edge
detection.
(a) Result of using the mask in
Fig. 10.9(c).
(b) Result of using the mask in Fig. 10.9(d). The input in both cases was Fig. 10.11(a).

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

The End!

Module 4 \&5: Image Segmentation \& Representation

Prepared By
Thejaswini S
Assistant Professor,
Dept. Of ETE,
BMSIT\&M

Syllabus

Module 4 :

* Fundamentals, point, line and edge detection, detection of isolated point, line detection edge models, basic edge detection [10.1,10.2.2 to 10.2.5]

Module 5:
*Thresholding , Region-based segmentation : [10.3, 10.4]
*Representation : 11.1 \{11.1.1 to 11.1.6\}
> Image segmentation divides an image into regions that are connected and have some similarity within the region and some difference between adjacent regions.
\Rightarrow The goal is usually to find individual objects in an image.

For the most part there are fundamentally two kinds of approaches to segmentation: discontinuity and similarity. - Similarity may be due to pixel intensity, color or texture.

- Differences are sudden changes (discontinuities) in any of these, but especially sudden changes in intensity along a boundary line, which is called an edge.
$>$ Segmentation algorithms are area oriented instead of pixel oriented.
$>$ The result of segmentation is the splitting up of image into connected areas.
$>$ Thus segmentation is concerned with dividing an image into meaning regions.
- Applications of image segmentation:

Medical Imaging, Satellite imaging, Movement detection ,License plate recognition ,Robot navigation ...etc

10.2 Point, line and Edge Detection

Segmentation methods are based on detecting sharp, local changes in intensity.

Three types of image features in which we are interested are
\checkmark isolated points
\checkmark lines
and
\checkmark edges.
Edge pixels are pixels at which intensity of an image function changes abruptly, and edges (edge segments) are set of connected edge pixels .

Edge detectors are local image processing methods designed to detect edge pixels.
$>$ A line may be viewed as an edge segment in which intensity of the background on either side of the line is either much higher or lower than intensity of the line pixels. Lines give rises to so called roof edges.
$>$ An isolated point may be viewed as a line whose length and width are equal to one pixel.

10.2.1 Background

\Rightarrow WKT the local changes in intensity can be detected using derivatives.
$>$ Derivatives of the digital function are defined in terms of these differences.
>First order derivatives :

1. must be nonzero in areas of constant intensity
2. must be non zero at the onset of an intensity step or ramp
3. must be nonzero at points along an intensity ramp.

Second order derivative :
1.must be zero in areas of constant intensity
2. must ne non zero at the onset and end of an intensity step or ramp
3. must be zero along intensity ramps
$>$ Because we are dealing with digital quantities whose values are finite, the maximum possible intensity change is also fine and the shortest distance over which a change can occurs is between adjacent pixels.
$>$ We obtain an approximation to the first-order derivatives at point x of a one-dimensional function $f(x)$ by expanding the function $f(x+\Delta x)$ into a Taylor series about x, letting $\Delta x=1$, and keeping only the linear terms
$>$ The result is the digital difference.

\checkmark We used a partial derivative here for consistency in notation when consider an image function of two variables, $\mathrm{f}(\mathrm{x}, \mathrm{y})$, at which time we will be dealing with partial derivatives along the two spatial axes.
\checkmark Clearly $\partial f / \partial x=d f / d x \quad$ when f is a function of only one variable.
\checkmark We obtain an expression for the second derivative by differentiating above equation with respect to x

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial f^{\prime}(x)}{\partial x}=f^{\prime}(x+1)-f^{\prime}(x) \\
& =f(x+2)-f(x+1)-f(x+1)+f(x) \\
& =f(x+2)-2 f(x+1)+f(x)
\end{aligned}
$$

$>$ Our interest is on the second derivative about point x, so we subtract 1 from the arguments in the preceding expression and obtain the result.

```
\frac{\mp@subsup{\partial}{}{2}f}{\partial\mp@subsup{x}{}{2}}=\mp@subsup{f}{}{\prime\prime}(x)=f(x+1)+f(x-1)-2f(x)
```

(10.2-2)
\Rightarrow The above two equations satisfy the conditions regarding derivatives of first and second order.
$>$ To illustrate this and also to highlight the fundament similarities and differences between first and second order derivatives in the context of image processing consider the fig below. As discussed in previous module.

$a b$
 c

FIGURE 10.2 (a) Image. (b) Horizontal intensity profile through the center of the image, including the isolated noise point. (c) Simplified profile (the points are joined by dashes for clarity). The image strip corresponds to the intensity profile, and the numbers in the boxes are the intensity values of the dots shown in the profile. The derivatives were obtained using Eqs. (10.2-1) and (10.2-2).

Summary the following can be concluded:

1. First order derivatives generally produce thicker edges in an image.
2. Second order derivatives have a stronger response to fine detail, such as thin lines, isolated points and noise.
3. second -order derivatives produce a double-edge response at ramp and step transitions in intensity.
4. the sign of the second derivative can be used to determine whether a transition into edge is from light to dark or dark to light.
\Rightarrow The most common way to look for discontinuities is to scan a small mask over the image. The mask determines which kind of discontinuity to look for.

$$
R=w_{1} z_{1}+w_{2} z_{2}+\ldots+w_{9} z_{9}=\sum_{i=1}^{9} w_{i} z_{i} \quad \begin{aligned}
& \text { FIGURE } 10.1 \mathrm{~A} \\
& \text { genereal } 3 \times 3 \\
& \text { mask. }
\end{aligned}
$$

w_{1}	w_{2}	w_{3}
w_{4}	w_{5}	w_{6}
w_{7}	w_{8}	w_{9}

10.2.2 Detection of isolated points

Point detection should be based on second derivative : Laplacian

$$
\begin{equation*}
\nabla^{2} f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \tag{10,2-4}
\end{equation*}
$$

where the partials are obtained using Eq. (10.2-2):

$$
\begin{equation*}
\frac{\partial^{2} f(x, y)}{\partial x^{2}}=f(x+1, y)+f(x-1, y)-2 f(x, y) \tag{10.2-5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} f(x, y)}{\partial y^{2}}=f(x, y+1)+f(x, y-1)-2 f(x, y) \tag{10.2-6}
\end{equation*}
$$

$$
\begin{aligned}
\nabla^{2} f(x, y)= & f(x+1, y)+f(x-1, y)+f(x, y+1) \\
& +f(x, y-1)-4 f(x, y)
\end{aligned}
$$

Using Laplacian mask in below fig10.4, we say that the point has been detected as the location (x, y) on which the mask is centered, if the absolute value of the response of the mask at that point exceeds a specific threshold.

Such a point is labeled as 1 in the output image and all others are labeled as 0 , thus producing a binary image.

1	1	1
1	-8	1
1	1	1

a
b c d
FIGURE 10.4
(a) Point detection (Laplacian) mask.
(b) X-ray image of turbine blade with a porosity. The porosity contains a single black pixel.
(c) Result of convolving the mask with the image. (d) Result of using Eq. (10.2-8) showing a single point (the point was enlarged to make it easier to see). (Original image courtesy of X-TEK Systems, Ltd.)

10.2.3 line detection

$>$ Next level of complexity is line detection.
$>$ For line detection we can expect second derivatives to result in a stronger response and to produce thinner lines than first derivatives.
\Rightarrow We can use the same laplacian mask shown above in fig 10.4(a) for line detection keeping in mind that the double line effect of the second derivative must be handled properly.
\Rightarrow This is illustrated in below example.

a b c d

FIGURE 10.5

(a) Original image.
(b) Laplacian image; the magnified section shows the positive/negative double-line effect characteristic of the Laplacian.
(c) Absolute value of the Laplacian.
(d) Positive values of the Laplacian.

The laplacian detector in fig 10.4, is isotropic, so its response is independent of direction, Often interest lies in detecting line sin specified directions.

Consider the mask shown in below fig 10.6

-1	-1	-1
2	2	2
-1	-1	-1

2	-1	-1
-1	2	-1
-1	-1	2
$+45^{\circ}$		

-1	2	-1				
-1	2	-1				
-1	2	-1		-1	-1	2
:---:	:---:	:---:				
-1	2	-1				
2	-1	-1				

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).

Suppose that an image with constant background and containing various lines (oriented at $0^{\circ}, \pm 45$ and 90) is filtered with the first mask .

The maximum responses would occur at image locations in which a horizontal line passed through the middle of the row. The second mask responds best to lines oriented at +45 . The third mask to vertical lines and forth to -45 .

a b
c d
e f
FIGURE 10.7
(a) Image of a wire-bond
template.
(b) Result of processing with the $+45^{\circ}$ line detector mask in Fig. 10.6.
(c) Zoomed view of the top left
region of (b).
(d) Zoomed view
of the bottom
right region of
(b). (e) The image in (b) with all negative values set to zero. (f) All points (in white)
whose values
satisfied the
condition $g \geq T$,
where g is the
image in (e). (The points in (f) were enlarged to make them easier to see.)

10.2.4 Edge Models

Edge detection is the approach used most frequently for segmentation images based on abrupt (local) changes in intensity.

Edge models are classified accordingly to their intensity profiles.
A step edge : involves a transition between two intensity levels occurring ideally over the distance of 1 pixel.

In case of step edge, the image intensity abruptly changes from one value to one side of the discontinuity to a different value on the opposite side.

FIGURE $\mathbf{1 0 . 8}$
From left to right, models (ideal representations) of a step, a ramp, and a roof edge, and their corresponding intensity profiles.
$>$ In practice, digital images have edges that are blurred and noisy, with the degree of blurring determined principally by limitations in the focusing mechanisms (eg. Lenses in the case of optical image) and the noise level determined principally by the electronic components of the image system.
>In such cases, edges are closely modeled as having an intensity ramp profile. The slope of the ramp is proportional to the degree of blurring in the edges.
$>$ In this model, we no longer have thin(1 pixel thick) path, instead, an edge point now is any point contained in the ramp and the edge segment would then be a set of such points that are connected.
$>$ The third model of an edge is so called - roof edge, having characteristics shown in fig above.
$>$ Two nearby ramps edges in a line structure called a roof.
$>$ Basically two ways of roof convex roof edge shown above.
$>$ Concave roof edge

FIGURE 10.9 A 1508×1970 image showing (zoomed) actual ramp (bottom, left), step (top, right), and roof edge profiles. The profiles are from dark to light, in the areas indicated by the short line segments shown in the small circles. The ramp and "step" profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels. (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

a b
FIGURE 10.10
(a) Two regions of constant intensity separated by an ideal vertical ramp edge.
(b) Detail near the edge, showing a horizontal intensity profile, together with its first and second derivatives.

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by random Gaussian noise of mean 0 and $\sigma=0.0,0.1,1.0$, and 10.0 , respectively. Second column: first-derivative images and gray-level profiles. Third column: second-derivative images and gray-level profiles.

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by random Gaussian noise of mean 0 and $\sigma=0.0,0.1,1.0$, and 10.0 , respectively. Second column: first-derivative images and gray-level profiles. Third column: second-derivative images and gray-level profiles.

Three fundamental steps performed in edge detection

1. Image smoothing for noise reduction 2 . detection of edge points
2. edge localization

10.2.5 basic edge detection

Detecting changes in intensity for the purpose of finding the edges can be accomplished using first or second order derivatives.

The image gradient and its properties
First-order derivatives:

- The gradient of an image $f(x, y)$ at location (x, y) is defined as the vector:
- $\operatorname{Grad}(f)=$

$$
\nabla \mathbf{f}=\left[\begin{array}{l}
G_{x} \\
G_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

The magnitude of this vector: $\quad \nabla f=\operatorname{mag}(\nabla \mathbf{f})=\left[G_{x}^{2}+G_{y}^{2}\right]^{1 / 2}$
The direction of this vector:

$$
\alpha(x, y)=\tan ^{-1}\left(\frac{G_{x}}{G_{y}}\right)
$$

Gradient operators: obtaining gradient of an image requires computing the partial derivatives of
$\partial f / \partial y$

-1
1

a b
FIGURE 10.13
One-dimensional masks used to implement Eqs. (10.2-12) and (10.2-13).

Detection of Discontinuities
 Gradient Operators

Roberts cross-gradient operators

-1	0			
0	1			
1	0		0	-1
:---:	:---:			

-1	-1	-1
0	0	0
1	1	1
-1	0	1
-1	0	1

Prewitt

-1	-2	-1				
0	0	0				
1	2	1				
-1	0	1				
-1	0	1		-1	0	2
:---:	:---:	:---:				

$$
\begin{aligned}
& g_{x}=\frac{\partial f}{\partial x}=\left(z_{9}-z_{5}\right) \\
& g_{y}=\frac{\partial f}{\partial y}=\left(z_{8}-z_{6}\right)
\end{aligned}
$$

Roberts operator

$$
\begin{aligned}
& g_{x}=\frac{\partial f}{\partial x}=\left(z_{7}+z_{8}+z_{9}\right)-\left(z_{1}+z_{2}+z_{3}\right) \\
& g_{y}=\frac{\partial f}{\partial y}=\left(z_{3}+z_{6}+z_{9}\right)-\left(z_{1}+z_{4}+z_{7}\right)
\end{aligned}
$$

$$
g_{x}=\frac{\partial f}{\partial x}=\left(z_{7}+2 z_{8}+z_{9}\right)-\left(z_{1}+2 z_{2}+z_{3}\right)
$$

$$
g_{y}=\frac{\partial f}{\partial y}=\left(z_{3}+2 z_{6}+z_{9}\right)-\left(z_{1}+2 z_{4}+z_{7}\right)
$$

\checkmark Prewitt masks are simpler to implement than sobel masks .
\checkmark The sobel masks have better noise suppression (smoothing characteristics which makes them preferable.

Prewitt masks for

 detecting diagonal edges| 0 | 1 | 1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| -1 | -1 | 0 |

-1	-1	0
-1	0	1
0	1	1

Prewitt

Sobel masks for detecting diagonal edges

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

Sobel

Detection of Discontinuities

Gradient Operators: Example

$$
\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}
$$

FIGURE 10.10
(a) Original image. (b) $\left|G_{x}\right|$, component of the gradient in the x-direction.
(c) $\left|G_{y}\right|$,
component in the y-direction. (d) Gradient
image, $\left|G_{x}\right|+\left|G_{y}\right|$.
$\nabla f \approx\left|G_{x}\right|+\left|G_{y}\right|$

Detection of Discontinuities

Gradient Operators: Example

Detection of Discontinuities

Gradient Operators: Example

a b
FIGURE 10.12
Diagonal edge detection. (a) Result of using the mask in Fig. 10.9(c).
(b) Result of using the mask in Fig. 10.9(d). The input in both cases was Fig. 10.11(a).

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

Module 5:

*Thresholding , Region-based segmentation : [10.3, 10.4]
*Representation : 11.1 \{11.1.1 to 11.1.6\}

10.3 Threshold

10.3.1 Foundation :

The basics of intensity thresholding

-Suppose the intensity histogram shown below fig a corresponds to an image $f(x, y)$, composed of light objects on dark background, in such a way that object and background pixels have intensity values grouped into 2 dominant modes.

a b

FIGURE 10.35

Intensity histograms that can be partitioned
(a) by a single threshold, and
(b) by dual
thresholds.
$>$ One way to extract the objects from the background is to select the threshold, T , that separates these modes.
$>$ Then any point (x, y) in the image at which $f(x, y)>T$ is called an object point
$>$ otherwise, the point is called background point.
$>$ The segmented image $g(x, y)$ is given by

$$
g(x, y)= \begin{cases}1 & \text { if } f(x, y)>T \\ 0 & \text { if } f(x, y) \leq T\end{cases}
$$

$>$ Where T ----constant appliable over an entire image,
$>$ The process given in this equation is referred as global thresholding.
$>$ When the value of T changes over an image, we can use the term variable (local) thresholding.
$>$ This local thresholding in which the values of T at any point (x, y) in am image depends on properties of a neighborhood of (x, y)
$>$ If T depends on the spatial coordinates (x, y) themselves, then variable thresholding is often referred as dynamic or adaptive thresholding.
$>$ Fig b shows a more difficult thresholding problems involving a histogram with thee dominant modes corresponding, for example to two types of light objects on a dark background.
$>$ Here multiple thresholding classifies a point (x, y) as belonging to the background if $f(x, y) \leq T 1$, to one object class if $T 1<f(x, y) \leq T 2$, and to other object class if $f(x, y)>T 2$.
$>\mathrm{G}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{cc}a, & \text { if } f(x, y)>T 2 \\ b, & \text { if } T 1<\mathrm{f}(\mathrm{x}, \mathrm{y}) \leq \mathrm{T2} \\ c, & \text { if } \mathrm{f}(\mathrm{x}, \mathrm{y}) \leq \mathrm{T1}\end{array}\right.$
Where a, b, c are three distinct intensity levels.
$>$ The success of intensity thresholding is directly related to the width and depth of the valley(s) separating the histogram modes.
$>$ The key factors affecting the affecting the properties of the valley(s) are

- separation between the peaks
- The noise contents in the image
- The relative size of the objects and background
- The uniformity of the illumination source
- The uniformity of the reflectance properties of the image

The role of noise in imaging threshold
Wkt how noise affects the histogram of an image.

a b c
d e f
FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard deviation of 10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of 50 intensity levels. (d)-(f) Corresponding histograms.
$>$ Fig 10.36(a) shows a noise free image so its histogram consists of two spikes modes as shown in fog 10.36(d).
>Segmenting this image into two regions is a trivial task involving a threshold placed anywhere between the two modes.
>Fig 10.36(b) shows the original image corrupted by Gaussian noise of zero mean and a standard deviation of 10 intensity level.
-Although the corresponding histogram modes are now broader, their separation is large enough so that the depth of the valley between them is sufficient to make the modes easy to separate.
$>$ A threshold placed midway between the two peaks would do a nice job of segmenting the image.
>Figure 10.36© shows the image corrupted by Gaussian noise of zero mean and a standard deviation of 50 intensity level.
$>$ From histogram it shows the situation is much more serious as there is no way to differentiate between two modes.

Little hope of Finding a suitable threshold for segmenting this image

The role of illumination and reflectance

a	b	c
d	e	f

FIGURE 10.37 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b). (d)-(f) Corresponding histograms.
$>$ Figure $10.37(\mathrm{a})$ is the noisy image and from (d) shows it histogram. This image is easily segmentable with a single threshold.
$>$ The effects of non uniform illumination is illustrated by multiplying the image in fig 10.37(a) by a variable intensity function such as the intensity ramp fig (b) the result is shown in fig 10.37(c) and the respective histogram fig (e-f) .
$>$ As in fig $10.37(\mathrm{f})$ the deep valley between peaks was corrupted to the point where separation of the modes without additional processing is no longer possible.
>Illumination and reflectance play a central role in the success of image segmentation using thresholding or other segmentation techniques.
$>$ Before image segmentation, these factors need to be controlled by the following approaches.
$>$ First Correct the shading pattern directly. Eg.: non uniform illumination can be corrected by multiplying the image by the inverse of the pattern, which can be obtained by imaging a flat surface of constant intensity.
$>$ The second approach is to attempt to correct the global shading pattern via processing . Eg: the top-hat transformation.
$>$ The third is to work-around non-uniformities using variable thresholding .

10.3.2 Basic Global Thresholding

$>$ When the intensity distributions of the objects and background pixels are sufficiently distinct, it is possible to use a single (global) threshold applicable over the entire image.
>In most of the applications, there is usually enough variability between the images, that even if global thresholding is suitable approach an algorithm capable of estimating automatically the threshold value for each image is required.
\rightarrow The following iterative algorithm can be used for this purpose

$$
g(x, y)= \begin{cases}1 & \text { if } f(x, y)>T \tag{10.3-1}\\ 0 & \text { if } f(x, y) \leq T\end{cases}
$$

1. Select an initial estimate for the global threshold, T.
2. Segment the image using T in Eq. (10.3-1). This will produce two groups of pixels: G_{1} consisting of all pixels with intensity values $>T$, and G_{2} consisting of pixels with values $\leq T$.
3. Compute the average (mean) intensity values m_{1} and m_{2} for the pixels in G_{1} and G_{2}, respectively.
4. Compute a new threshold value:

$$
T=\frac{1}{2}\left(m_{1}+m_{2}\right)
$$

5. Repeat Steps 2 through 4 until the difference between values of T in successive iterations is smaller than a predefined parameter ΔT.
$>$ This simple algorithm works well in situation where there is reasonably clear valley between the modes of the histogram related to the objects and background.
$\Rightarrow \Delta \mathrm{T}$ is used to control the number of iteration.

10.3.3 Optimum Global Thresholding using Otsu's method

Thresholding may be viewed as a statistical-decision theory problem whose objective is to minimize the average error incurred in assigning pixels to two or more groups (also catled classes).

This problem is known to have an elegant closed-form solution known as the Bayes decision rule

The solution is based on only two parameters: the probability density function (PDF) of the intensity levels of each class and the probability that each class occurs in a given application.

The approach discussed in this section, called Otsu's method (Otsu [1979]),
The method is optimum in the sense that it maximizes the between-class variance, a well-known measure used in statistical discriminant analysis.

The basic idea is that well-thresholded classes should be distinct with respect to the intensity values of their pixels and, conversely, that a threshold giving the best separation between classes in terms of their intensity values would be the best (optimum) threshold.

In addition to its optimality, Otsu's method has the important property that it is based entirely on computations performed on the histogram of an image, an easily obtainable 1-D array.

Let $\{0,1,2, \ldots, L-1\}$ denote the L distinct intensity levels in a digital image of size $M \times N$ pixels, and let n_{i} denote the number of pixels with intensity i. The total number, $M N$, of pixels in the image is $M N=n_{0}+n_{1}+n_{2}+\cdots+n_{L-1}$. The normalized histogram (see Section 3.3) has components $p_{i}=n_{i} / M N$, from which it follows that

$$
\begin{equation*}
\sum_{i=0}^{L-1} p_{i}=1, \quad p_{i} \geq 0 \tag{10.3-3}
\end{equation*}
$$

Now, suppose that we select a threshold $T(k)=k, 0<k<L-1$, and use it to threshold the input image into two classes, C_{1} and C_{2}, where C_{1} consists of all the pixels in the image with intensity values in the range $[0, k]$ and C_{2} consists of the pixels with values in the range $\mid \mathrm{k}+1, \mathrm{~L}-1$]. Using this threshold. the probability, $P_{1}(k)$. that a pixel is assigned to (i.e. thresholded into) class C_{1} is given by the cumulative sum

$$
\begin{equation*}
P_{i}(k)=\sum_{i=0}^{k} p_{i} \tag{10.3-4}
\end{equation*}
$$

Viewed another way, this is the probability of class C_{1} occurring. For example, if we set $k=0$, the probability of class C_{1} having any pixels assigned to it is zero. Similarly, the probability of class C_{2} occurring is

$$
\begin{equation*}
P_{2}(k)=\sum_{i=k+1}^{L-1} p_{i}=1-P_{1}(k) \tag{10.3-5}
\end{equation*}
$$

From Eq. (3.3-18), the mean intensity value of the pixels assigned to class C_{1} is

$$
\begin{align*}
m_{1}(k) & =\sum_{i=0}^{k} i P\left(i / C_{1}\right) \\
& =\sum_{i=0}^{k} i P\left(C_{1} / i\right) P(i) / P\left(C_{1}\right) \tag{10.3-6}\\
& =\frac{1}{P_{1}(k)} \sum_{i=0}^{k} i p_{i}
\end{align*}
$$

where $P_{1}(k)$ is given in Eq. (10.3-4). The term $P\left(i / C_{1}\right)$ in the first line of Eq. (10.3-6) is the probability of value i, given that i comes from class C_{1}. The second line in the equation follows from Bayes' formula:

$$
P(A / B)=P(B / A) P(A) / P(B)
$$

The third line foliows from the fact that $P\left(C_{1} / i\right)$, the probability of C_{1} given i, is 1 because we are dealing only with values of i from class C_{1}. Also, $P(i)$ is the probability of the i th value, which is simply the i th component of the histogram, p_{i}. Finally, $P\left(C_{1}\right)$ is the probability of class C_{1}, which we know from Eq. (10.3-4) is equal to $P_{1}(k)$.

Similarly, the mean intensity value of the pixels assigned to class C_{2} is

$$
\begin{align*}
m_{2}(k) & =\sum_{i=k+1}^{L-1} i P\left(i / C_{2}\right) \tag{10.3-7}\\
& =\frac{1}{P_{2}(k)} \sum_{i=k+1}^{L-1} i p_{i}
\end{align*}
$$

The cumulative mean (average intensity) up to level k is given by

$$
\begin{equation*}
m(k)=\sum_{i=0}^{k} i p_{i} \tag{10.3-8}
\end{equation*}
$$

and the average intensity of the entire image (i.e., the global mean) is given by

$$
\begin{equation*}
m_{G}=\sum_{i=0}^{L-1} i p_{i} \tag{10.3-9}
\end{equation*}
$$

The validity of the following two equations can be verified by direct substitution of the preceding results:

$$
\begin{equation*}
P_{1} m_{1}+P_{2} m_{2}=m_{G} \tag{10.3-10}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}+P_{2}=1 \tag{10.3-11}
\end{equation*}
$$

where we have omitted the k s temporarily in favor of notational clarity.

In order to evaluate the "goodness" of the threshold at level k we use the normalized, dimensionless metric

$$
\begin{equation*}
\eta=\frac{\sigma_{B}^{2}}{\sigma_{G}^{2}} \tag{10.3-12}
\end{equation*}
$$

where σ_{G}^{2} is the global variance [i.e., the intensity variance of all the pixels in the image, as given in Eq. (3.3-19)],

$$
\begin{equation*}
\sigma_{G}^{2}=\sum_{i=0}^{L-1}\left(i-m_{G}\right)^{2} p_{i} \tag{10.3-13}
\end{equation*}
$$

and σ_{B}^{2} is the between-class variance, defined as

$$
\begin{equation*}
\sigma_{B}^{2}=P_{1}\left(m_{1}-m_{G}\right)^{2}+P_{2}\left(m_{2}-m_{G}\right)^{2} \tag{10.3-14}
\end{equation*}
$$

This expression can be written also as

$$
\begin{align*}
\sigma_{B}^{2} & =P_{1} P_{2}\left(m_{1}-m_{2}\right)^{2} \\
& =\frac{\left(m_{G} P_{1}-m\right)^{2}}{P_{1}\left(1-P_{1}\right)} \tag{10.3-15}
\end{align*}
$$

Reintroducing k, we have the final results:

$$
\begin{equation*}
\eta(k)=\frac{\sigma_{B}^{2}(k)}{\sigma_{G}^{2}} \tag{10.3-16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{B}^{2}(k)=\frac{\left[m_{G} P_{1}(k)-m(k)\right]^{2}}{P_{1}(k)\left[1-P_{1}(k)\right]} \tag{10.3-17}
\end{equation*}
$$

Then, the optimum threshold is the value, k^{*}, that maximizes $\sigma_{B}^{2}(k)$:

$$
\begin{equation*}
\sigma_{B}^{2}\left(k^{*}\right)=\max _{0 \leq k \leq L-1} \sigma_{B}^{2}(k) \tag{10.3-18}
\end{equation*}
$$

Once k^{*} has been obtained, the input image $f(x, y)$ is segmented as before:

$$
g(x, y)= \begin{cases}1 & \text { if } f(x, y)>k^{*} \tag{10.3-19}\\ 0 & \text { if } f(x, y) \leq k^{*}\end{cases}
$$

for $x=0,1,2, \ldots, M-1$ and $y=0,1,2, \ldots, N-1$. Note that all the quantities needed to evaluate Eq. (10.3-17) are obtained using only the histogram of $f(x, y)$. In addition to the optimum threshold, other information regarding the segmented image can be extracted from the histogram.

The normalized metric η, evaluated at the optimum threshold value, $\eta\left(k^{*}\right)$, can be used to obtain a quantitative estimate of the separability of classes, which in turn gives an idea of the ease of thresholding a given image. This measure has values in the range

$$
\begin{equation*}
0 \leq \eta\left(k^{*}\right) \leq 1 \tag{10.3-20}
\end{equation*}
$$

The lower bound is attainable only by images with a single, constant intensity level, as mentioned earlier. The upper bound is attainable only by 2 -valued images with intensities equal to 0 and $L-1$

Otsu's algorithm may be summarized as follows:

1. Compute the normalized histogram of the input image. Denote the components of the histogram by $p_{i}, i=0,1,2, \ldots, L-1$.
2. Compute the cumulative sums, $P_{1}(k)$, for $k=0,1,2, \ldots, L-1$, using Eq. (10.3-4).
3. Compute the cumulative means, $m(k)$, for $k=0,1,2, \ldots, L-1$, using Eq. (10.3-8).
4. Compute the global intensity mean, m_{G}, using (10.3-9).
S. Compute the between-class variance, $\sigma_{B}^{2}(k)$, for $k=0,1,2, \ldots, L-1$, using Eq. (10.3-17).
5. Obtain the Otsu threshold, k^{*}, as the value of k for which $\sigma_{B}^{2}(k)$ is maximum. If the maximum is not unique, obtain k^{*} by averaging the values of k corresponding to the various maxima detected.
6. Obtain the separability measure, η^{*}, by evaluating Eq. (10.3-16) at $k=k^{*}$.

10.3.4 Using Image smoothing to improve Global Thresholding

As noted in Fig. 10.36, noise can turn a simple thresholding problem into an unsolvable one. When noise cannot be reduced at the source, and thresholding is the segmentation method of choice, a technique that often enhances performance is to smooth the image prior to thresholding. We illustrate the approach with an example.

Figure 10.40(a) is the image from Fig. 10.36(c), Fig. 10.40(b) shows its histogram, and Fig. 10.40(c) is the image thresholded using Otsu's method,

Every black point in the white region and every white point in the black region is a thresholding error, so the segmentation was highly unsuccessful.

Figure $10.40(\mathrm{~d})$ shows the result of smoothing the noisy image with an averaging mask of size 5×5 (the image is of size 651×814 pixels), and Fig. 10.4)(e) is its histogram.

FIGURE 10.39
(a) Original
image.
(b) Histogram
(high peaks were clipped to
highlight details in the lower values).
(c) Segmentation result using the basic global algorithm from Section 10.3.2.
(d) Result obtained using Otsu's method.
(Original image courtesy of Professor Daniel
A. Hammer, the University of
Pennsylvania.)

a b c
d e f
FIGURE 10.40 (a) Noisy image from Fig. 10.36 and (b) its histogram. (c) Result obtained using Otsu's method. (d) Noisy image smoothed using a 5×5 averaging mask and (e) its histogram. (f) Result of thresholding using Otsu's method.

a b c
d e f
FIGURE 10.41 (a) Noisy image and (b) its histogram. (c) Result obtained using Otsu's method. (d) Noisy image smoothed using a 5×5 averaging mask and (e) its histogram. (f) Result of thresholding using Otsu's method. Thresholding failed in both cases.

10.3.5 Using Edges to improve Global Thresholding

Based on the discussion in the previous four sections, we conclude that the chances of selecting a "good" threshold are ephanced considerably if the histogram peaks are tall, narrow, symmetric, and separated by deep valleys.

One ap proach for improving the shape of histograms is to consider only those pixels that lie on or near the edges between ohjects and the background.

An immediate and obvious improvement is that histograms would be less dependent on the relative sizes of objects and the background. For instance, the histogram of an image composed of a small object on a large background area (or vice versa) would be dominated by a large peak because of the high concentration of one type of pixels.

We saw in the previous section that this can lead to failure in threstolding.

If only the pixels on or near the edges between objects and background were used, the resulting histogram would have peaks of approximately the same height. In addition. the probability that any of those pixels lies on an object would be approximately equal to the probability that it lies on the background, thus improving the symmetry of the histogram modes. Finally as indicated in the following paragraph. using pixels that satisfy some simple measures based on gradient and Laplacian operators hats a tendency to deepen the valley between histogran peaks.

